(1 中国科学院矿产资源研究重点实验室 中国科学院地质与地球物理研究所, 北京10002 9; 2 中国科学院大学地球科学学院, 北京100049; 3 中国有色集团抚顺 红透山矿业有 限公司, 辽宁 抚顺113000; 4 中国地质大学地球科学与资源学院, 北京10 0083)
第一作者简介彭自栋, 男, 1988年生, 博士研究生, 矿物学、岩石学、矿床学专业。 Email: pengzidong2007@126.com
**通讯作者张连昌, 男, 1959年生, 研究员, 矿床地质与地球化学专业。 Email: lc zhang@mail.iggcas.ac.cn
收稿日期2016_05_16
本文得到国家自然科学基金项目“晚太古代清原绿岩带BIF与VMS矿床的成因联系及沉积环 境”(批准号:41572076)和“973”项目“华北克拉通前寒武纪重大地质事件与成矿”( 批准号:2012CB416601)联合资助
(1 Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chi nese Academy of Sciences, Beijing 100029, China; 2 School of Earth Science, Un iv ersity of Chinese Academy of Sciences, Beijing 100049, China; 3 China Nonferrous Hongtoushan Ming Group Co., Ltd., Fushun 113000, Liaoning, China; 4 Sch ool of Earth Science and Resources, China University of Geosciences, Beijing 100083, China)
2016_05_16
近年来随着前寒武纪地质研究工作的深入,有学者发现VMS与BIF铁矿在早前寒武纪存在共 生现象(Veizer, 1976; Meyer, 1988; Isley et al., 1999; Huston et al., 2004)。目前 ,关于二者共生问题的研究,在时间和空间分布特征上取得了一定认识,即大规模的共生现 象主要见于新太古代早期和古元古代晚期的表壳岩系中,而且二者在同一区域的分布常具此 消彼长的过渡性。然而,关于2类矿床共生的内在成因联系、构造背景及形成古环境等方面 仍存在诸多争议(Slack et al., 2007; Thurston et al., 2004; Bekker et al., 2004; 2 010; Huston et al., 2010; 2014; Rasmussen et al., 2012; Lodge et al., 2015)。
本文在系统收集和总结近年来国内外相关资料的基础上,详细阐述了VMS与BIF铁矿共生的时 空分布特征、成因联系及其形成时的古构造和古环境等,简要剖析了当前研究存在的问题 ,以期对中国华北克拉通的VMS与BIF铁矿共生组合研究工作有所启示。
统计显示,目前在全球范围内已有多地存在VMS与BIF铁矿共生的现象,如北美Abitibi绿 岩带(Thurston et al., 2008)、西格陵兰Isua绿岩带(Veizeret al., 1989; Huston et a l., 2014)、中国河北内丘(祁思敬, 1983)、清原(顾连兴等, 2004; 万渝生等, 2005; Gu e t al., 2007; 张雅静等, 2014; Zhu et al., 2015; 彭自栋等, 2015)和五台等地区(Polat et al., 2005; 李碧乐等, 2007)以及美国Arizona州Jerome地区(Slack et al., 2007)。 此外, 基于对前人(Isley et al., 1999; Huston et al., 2004; Franklin et al., 2005 ; 李文渊, 2007; Bekker et al., 2010; Mercier_Langevin et al., 2014)年代学资料的总 结, 发现VMS与BIF在同一区域共存且近乎同时形成的现象较为普遍, 且主要出现于太古代 其次为元古代(图2)。
图 1前寒武纪VMS、BIF和地壳增生时间演化图 (改自Rasmussen et al., 2012) Fig. 1Histogram showing the abundance of VMS and BIF together with the intensi ty of crust growth in Precambrian (modified after Rasmussen et al., 20 12) |
图 2前寒武纪全球主要VMS和BIF分布图 (改自Trendall, 2002; Franklin et al., 2005; Bekker et al., 2010; Mercier_Langevin et al., 2014) 1—后太古代地体; 2—太古代地体; 3—VMS矿床产区 Fig. 2Geological map showing the distribution of main VMS and BIF in the world in Precambrian (modified after Trendall, 2002; Franklin et al., 2005; Bekker et al., 2010; Mercier_Langevin et al., 2014) 1—Post Archean terranes; 2—Archean terranes; 3—VMS mineralization areas |
图 3北美太古代Abitibi绿岩带VMS与BIF空间分布图(改自Thurston et al., 2008) a. Abitibi绿岩带; b. 绿岩带内代表性地层柱状图 1—沉积岩; 2—流纹岩; 3—英安岩; 4—安山岩; 5—玄武岩; 6—科马提岩; 7—层 状侵入体; 8—花岗岩; 9—不整合界面; 10—假整合 界面; 11—沉积间隔时限(Ma) ; 12—铁建造; 13—块状硫化物矿床 Fig. 3Geological map showing the spatial relationship of VMS and BIF in the No rth American Archean Abitibi greenstone belt (modified after Thurston et al., 2008) a. Abitibi greenstone belt; b. Representative stratigraphic columns from select ed locations across the greenstone belt 1—Sediments; 2—Rhyolite; 3—Dacite; 4—Andesite; 5—Basalt; 6—Komatiite; 7—L ayered intrusion; 8—Granite; 9—Unconformity; 10—Pseudoconformity; 11—Durat ion of depositional gap (Ma); 12—Iron Formation; 13—VMS deposit |
表 1Algoma与Superior型BIF矿床地质特征对比(改自王长乐等, 2012) Table 1Comparison of geological features between Algoma_ and Superior_type BIF deposits (modified after Wang et al., 2012) |
图 4美国Arizona州中元古代早期VMS与BIF共生分布图(改自 Slack et al., 2007) a. 美国Arizona州中部地区地质简图,仅显示中元古代地层; b. Jerome地区南部和北部中 元古代地层剖面图,为清楚展示VMS与BIF 的相对空间位置,矿床规模进行了一定程度的扩 大 1—沉积岩; 2—流纹岩; 3—玄武岩; 4—VMS矿床; 5—碧玉/铁建造; 6—United Verd e矿床; 7—Copper Chief矿床; 8—Verde Central矿床 Fig. 4Geological map showing the distribution of VMS_BIF paragenetic assemblag e in Arizona, USA (modified after Slack et al., 2007) a. Sketch map of central Arizona, Mesoproterozoic strata only; b. Section of Mes oproterozoic strata of south and north Jerome, in order to show the spatial re lationship of VMS and BIF (their scale is exaggerated to some extent) 1—Sediments; 2—Rhyolite; 3—Basalt; 4—VMS deposit; 5—Jasper/Iron Formati on; 6—United Verde deposit; 7—Copper Chief deposit; 8—Verde Central depo sit |
综上,VMS与BIF成矿物质来自共同的热液系统,但目前在其具体成矿过程方面仍存在不同认 识。Zaleski等(1995)对Superior地区Manitouwadge绿岩带的Geco VMS矿床(2.72 Ga)开展 了 详细的岩相学和地质填图工作,并根据矿化类型、蚀变特征、矿体与BIF空间关系变化及矿 石有用组分差异将矿体划分为3类:下部富Cu、网脉状_浸染状矿体、中部块状Zn_Cu_(Pb)矿 体和上部以BIF为围岩的块状Zn_Pb_(Cu)矿体。通过对比不同类型矿体中矿石Cu/Zn比值及其 空间产出关系,他们认为下部高Cu/Zn比值的矿体形成于热液活动早期的高温阶段,而上部 低Cu/Zn比值的矿体及其围岩BIF则形成于热液系统衰减期的低温阶段。Gross(1995)对全球 古太古代—元古代铁建造的不同沉积相(氧化物相、硅酸盐相、碳酸盐相、硫化物相)进行全 岩地球化学特征分析,结果表明与VMS共生的BIF与双峰式火山作用关系密切,多形成于火山 _热液喷口或其附近,其成矿物质来自VMS成矿系统外围伴生的小规模、低温热液系统。
美国Jerome地区发育大规模空间关系密切的含磁铁矿/赤铁矿碧玉、BIF和富铜VMS,它们均 产出于厚约1.0~2.5 km的古元古代晚期(1.74~1.71 Ga)火山_沉积序列中(Lindberg, 1986; Lindberg et al., 1987; Anderson, 1989)。通过铁碧玉和BIF的全岩地球化学分析 ,Slack 等(2007)认为海底火山_热液活动强度是控制其与VMS共生的主要因素。当热液强度较大, 足以阻碍深海氧化反应时,铁会被搬运并在远离热液喷口的地方形成BIF;若其不足,则铁 以硫化物或氧化物形式沉淀在喷口附近。Foustoukos等(2008)认为,在深水缺氧环境中BIF 的形成与海底火山热液作用相关,铁的氧化沉淀可能发生于热液气液相分离条件下,此时挥 发性组分(如H2和HCl)优先进入气相,余下部分相应渐变为碱性、氧化的高盐度溶液,进 而 造成Fe2+氧化沉淀形成BIF。然而,这一假想缺乏实验数据和典型实例支持,但仍可在一定程度上解释VMS与BIF 的共生机制。
图 5太古代VMS和BIF共生假想成因模式图(改自Bekker et al., 2010; Farquhar et al. , 2011) 1—含球状黄铁矿黑色页岩; 2—含浸染状黄铁矿灰色页岩/硅质碎屑岩; 3—条带状铁建造 ; 4—长英质火山岩; 5—火山成因块状硫化物 矿床; 6—化学变层; 7—热液循环单元 ; 8—近海平面/海底热液柱 Fig. 5Hypothetical genetic model schematic diagram of Archean VMS_BIF paragene tic assemblage (modified after Bekker et al., 2010; Farquhar et al., 2011) 1—Black shale with pyrite nodules; 2—Gray shale/fine_grained siliciclastic ro ck with disseminated pyrite; 3—Banded iron formation; 4—Felsic volcanic ro ck ; 5—Volcanogenic massive sulfides; 6—Chemocline; 7—Hydrothermal circulatio n cells; 8—Subaerial/submarine plumes |
Taylor等(2003)和Lodge等(2015)对~2.7 Ga Vermilion绿岩带(位于Superior地区)的岩相 学 和地球化学研究显示,VMS矿床集中分布地区发育科马提岩和大量具岛弧_弧后特征的镁铁质 火山岩(主要为拉斑质和钙碱性玄武岩),同时,仅以VMS围岩形式出现的长英质岩石,经原 始地幔标准化后,微量元素配分曲线略微右倾,具明显的Nb、Ti负异常和Zr、Hf正异常,其 LREE(轻稀土元素)和HREE(重稀土元素)相对于原始地幔的富集程度分别为10~50倍和7~20 倍 ,整体与FII型长英质火山岩类似,据此认为其形成构造环境为地幔柱叠加的张性岛弧。而L odge等(2015)对该区规模最大的Soudan BIF的围岩地球化学研究显示,经原始地幔标准化后 ,其镁铁质火山岩微量元素配分曲线可分为2类:一类呈平坦_略微右倾,Th、Nb和LREE相对 亏损,Nb/Th比值介于0.8~1.2之间,并且其Th/Yb和Zr/Y比值具有与拉斑玄武岩类似的特 征;另 一类微量元素配分曲线略微右倾,具负的Nb和Ti异常,Nb/Th比值小于0.5,Th/Yb和Zr/Y比 值与 钙碱性玄武岩一致。上述特征表明,其原岩主要为钙碱性玄武岩和拉斑玄武岩,暗示该BIF 产于岛弧向弧后过渡的环境。Ayer等(2002)通过对Abitibi绿岩带的岩相学、同位素年代学 和同位素地球化学进行研究认为,该绿岩带内的火山岩可划分为2750~2697 Ma的以拉斑玄 武 岩和科马提岩组合占主导的5个火山旋回和2696~2675 Ma的以钙碱性玄武岩为主导的2个旋 回 ,对11件不同旋回中的科马提岩、拉斑_钙碱性玄武岩、长英质火山岩的Nd同位素分析显示 ,其εNd(t)值变化于2.2~3.4,平均为2.5±0.5,据此认为Abitibi 绿岩带为地幔柱和俯 冲作用下原地演化的产物。Sproule等(2002)对Abitibi绿岩带广泛发育的科马提岩的地球化 学研究显示,它们的化学组成具有明显的时空差异,经原始地幔标准化后,形成于2750~27 35 Ma的科马提岩Ti亏损,具高的Al2O3/TiO2比值(25~35)及低的(Gd/Yb)PM 比值(0.6~0.8),2725~2720 Ma的科马提岩Al亏损、Ti富集,具低的Al2O3/TiO2( 6~14)比值和高的(Gd/Yb)PM比值(1.2~2.0),而2718~2710 Ma的科马提岩则具有 相对居中的Al2O3/TiO2比值(15~25)和(Gd/Yb)PM比值(0.8~1.2),这些都 表明时间跨度长达50 Ma的科马提岩应当为多期次地幔柱活动的产物。在上述工作基础上 梳理,认为该绿岩带不同于世界范围内其他的绿岩带,其广泛发育双峰式火山岩并有大规模 的科马提岩产出,相应的地球化学特征指示其镁铁质火山岩具有岛弧玄武岩_拉斑玄武岩特 征。综上所述Abitibi绿岩带应当形成于张性岛弧_弧后盆地环境,同时具有同期地幔柱作用 的叠加。
大规模VMS与BIF共生现象最早出现于~2.7 Ga,这一时期的地质记录中缺乏沉积成因的层 状 硫酸盐矿床,但发育巨量的BIF (以Algoma型为主,少量Superior型),表明新太古代海洋整 体缺硫低氧(Huston et al., 2004)。同时,大量研究表明,与BIF同时期的VMS和海洋积物 中的硫化物、硫酸盐均记录了硫同位素(Δ33S)的非质量分馏现象(Δ33S=-2 ‰~10‰)(Farquhar et al., 2000; Mojzsis et al., 2003; Sharman et al., 2015), 且硫 化物(δ34S=-1‰~3‰)和硫酸盐(δ34S=3.8‰~5.4‰)的δ34S 值未发生较大程度分馏(Veizer et al., 1982; Hayes et al., 1992) (图6a、b),说明当 时大气应处 于缺氧状态(Farquhar et al., 2000)。
一般认为,发生于2.45~2.20 Ga的大氧化事件(Great Oxidation Event, GOE)导致了大 气中氧含量明显上升,至2.2 Ga时,氧含量已基本接近现代水平(Holland,2002; 2006; B ekker et al., 2004; Hannah et al., 2004)。大气氧含量的升高一方面引 起硫同位素非质 量分馏效应的消失(Farquhar et al., 2000; Pavlov et al., 2002) (图6a、b),并造成大 陆有氧 风化作用的增强,促使大量的可溶性硫酸盐进入海洋(Huston et al., 2010);另一方面 使得 海洋从浅部 到深部的逐渐氧化,最终在1.8 Ga左右海洋整体氧化,从而导致BIF大规模消失 ( Cloud, 1972; Huston et al., 2004)。大量研究显示,1.8 Ga左右Fe、U等氧化还原 状 态变化敏感元素的地球化学行为发生了转变,如古土壤中Fe的亏损、沥青铀矿和黄铁矿等演 化还原敏感矿物的消失、BIF中U含量的升高,同样表明这段时间内大气氧含量的增加(Holla nd, 1984; Holland et al., 1990; Rye et al., 1998; Ono et al., 2000; Partin et al ., 2013a; 2013b)。
图 6前寒武纪硫化物及硫酸盐硫同位素特征演化图(GOE_大氧化事件) a. Δ33S同位素; b. δ34S同位素(改自Farquhar et al., 2011) Fig. 6Diagram showing characteristics of S isotope evolution of sulfide and su lfate in Precambrian (GOE_Great Oxidation Event) a. Δ33S isotopes; b. δ34S isotopes (modified after Farquhar et al ., 2011) |
Slack等(2007; 2009)对产于深海环境与富铜VMS共生的含铁喷流沉积岩及BIF(1.74~1.71 Ga)的地球化学研究表明,经页岩(PAAS)标准化后,其稀土元素配分型式呈现轻稀土元素亏 损、重稀土元素富集[(La/Yb)SN=0.17~0.75],具正的Eu异常[(Eu/Eu*) SN=1.15~3.33]和微弱负Ce到正Ce异常[(Ce/Ce*)SN=0.95~1.36]。考虑 到同时期的海洋中缺乏浅海相BIF产出,Slack等(2007; 2009)认为~1.8 Ga的海洋应为氧 化还原分层的水体,即浅部处于富硫的氧化状态,而深部则为贫硫弱氧化。Rasmussen等(20 12)对西澳Frere组BIF凝灰岩夹层中的锆石开展了SHRIMP年代学研究,结果表明其形成于~1 .89 Ga,近似代表了该BIF的形成时代,与北美Superior地区广泛发育的BIF沉淀时间一致(~1. 88 Ga)(Findlay et al., 1995; Fralick et al., 2002; Schneider et al., 2002),进一 步说明这种层化海洋的出现是全球性的,其形成应与~18.8亿年大规模的地幔柱活动有关 。
综上所述,VMS与BIF共生组合研究可为古元古代晚期的海洋环境提供重要约束,表明当时海 洋并非完全氧化或硫化,至少深海应该处于弱氧化贫硫状态。此外,研究显示,中_新元古 代同样存在铁建造(Granular Iron Formation和Rapitan Iron Formation)与VMS或Sedex型 矿床共生的现象,如印度拉贾斯坦邦的Dariba Zn_Pb_Ag矿床(1.8 Ga) (Deb et al., 2004 a; Deb et al., 2004b),澳大利亚新南威尔士州的特大型Broken Hill Pb_Zn_Ag矿床 (16 .8亿年) (Plimer, 1979; Lottermoser, 1989; Page et al., 2005),南非Aggeneys和Gam sberg Pb_Zn_Ag矿床(1.2 Ga)(Stalder et al., 2004; Cornell et al., 2009)以及纳米 比亚Otjosondu地区的Outer Shelf Fe_Mn矿床(~0.7 Ga) (Bühn et al., 1992)等。这在 一定程度上反映中_新元古代可能仍存在局部还原非硫化的海洋或深部海水。
祁思敬等(1983)较早注意到,河北内丘地区存在太古代杏树台VMS矿床与磁铁石英岩和磁铁 角闪石英岩(条带状,BIF?)的共生和过渡现象,在矿体外围矿石逐渐从硫化物相转变为磁铁 石英岩或磁铁角闪石英岩,部分矿段可见硫化物矿石与磁铁石英岩相伴产出,这些磁铁角 闪石英岩的原始成分应为火山外围堆积的硅铁质化学沉积物。关于二者共生成因,祁思敬等 (1983)认为,火山热液上升至海底与海水混合导致物理化学条件的变化,金属物质卸载形 成VMS,硫化物上部及外围的磁铁矿可能是当热液进入衰微时,∑S迅速降低、f(O2 )回升,海水中游离的残余铁质以氧化物相沉积下来的结果。
近年来大量的年代学研究表明,在新太古代清原和五台绿岩带同样存在VMS与BIF同时期产出 的现象(Polat et al., 2005; 李碧乐等, 2007; 万渝生等, 2005; 张雅静等, 2014; Zhu e t al., 2015; Wu et al., 2016),但目前关于二者是否为共生成因的研究相对欠缺。彭自 栋等(2015)结合前人(辽宁省区域地质志, 1989; Zhai et al., 1985; 于凤金, 2006; 张雅 静, 2014; 张雅静等, 2014; Zhu et al., 2015)资料对清原地区VMS与BIF地质特征进行了 初步研究,认为区内VMS矿床集中产出于红透山组中段和上段,赋矿地层岩性以黑云斜长片 麻岩和角闪斜长片岩组成的薄层互层带为主,矿床矿体形态多受后期构造运动影响,呈似层 状、脉状、囊状、似筒状等形态产出,其中,在树基沟矿区观察到铜_锌矿体中有条带状铁 矿夹层,在红透山矿区、大荒沟矿区观察到VMS矿床上盘有BIF产出;BIF矿体围岩主要 为角闪斜长片麻岩、角闪片麻岩、黑云变粒岩、角闪变粒岩,矿体呈层状与围岩整合产出, 在区内小莱河、下甸子、马家店矿区矿石中均观察到黄铁矿微条带与磁铁矿微_中条带互层 产出现象。Wu等(2013)基于清原绿岩带浑北地区含石榴子石角闪岩(2.56~2.51 Ga, 万渝 生等, 2005)的岩相学和p_t变质轨迹研究,认为其演化过程遵循逆时针p_t轨迹, 同时,考虑到清原绿岩带发育超镁铁质_镁铁质火山岩、双峰式火山岩以及大规模与绿岩带 表壳岩近同期的TTG (孙德育等, 1993; Bai et al., 1998),认为清原绿岩带形成于地幔 柱活动及其诱发的幔源岩浆底侵作用过程中。Peng等(2015)对清原绿岩带浑南新宾地区的超 镁铁质_镁铁质、长英质火山岩(>2.51 Ga)以及石英闪长岩(2.57~2.51 Ga)、TTG(2.5 7~2.51 Ga)和石英二长岩(2.51~2.49 Ga)系列开展了岩相学、地球化学及同位素年代 学研究,结果显示区内镁铁质侵入体和火山岩具有高的MgO含量(5.4%~7.5%)和Mg#值(4 8~ 61),球粒陨石标准化后,其稀土元素配分曲线平坦_略微右倾((La/Yb)CN=0.4~1 .1; (Gd/Yb)CN=1.1~1.3);变安山_流纹岩经球粒陨石标准化后显示,轻、中稀 土元素富集((La/Yb)CN=50~65; (Gd/Yb)CN=8.3~12),在原始地幔标准化 蛛网图中,其大离子亲石元素富集,高场强元素亏损;石英闪长岩具有高的镁值(60~64), 球粒陨石标准化后稀土元素特征显示其轻、中稀土元素略富集((La/Yb)CN=5.2~6 .7; (Gd/Yb)CN=2.5~2.9),原始地幔标准化后显示大离子 亲石元素略富集;TTG岩系具有与变安山_流纹岩相似的稀土元素配分模式,但在原始地幔标 准化蛛网图中,其Nb、Ta 亏损,Zr、Hf富集;石英二长岩(球粒陨石标注化)稀土元素配分显示轻、中稀土元素略富集 ((La/Yb)CN=3.9~7.8; (Gd/Yb)CN=2.5~2.9),与石英闪长岩相比具有 明显的负Eu异常((Eu/Eu*)=0.6~0.7),原始地幔标准化蛛网图中,其大离子亲石元 素 富集,高场强元素除Zr、Hf外明显亏损;此外,TTG岩系(εNd(t)=2~6; ( 87Sr/86Sr)t=~0.700)相对于区内其他岩石(εNd( t)=0~2; (87Sr/86Sr)t=0.701~703)具有更为亏损的Sr_N d同 位素特征。综合上述特征,Peng等认为清原绿岩带是洋壳低角度向陆壳俯冲同时结合垂相 构 造运动作用的综合产物,其逆时针的p_t变质轨迹与火山弧岩浆作用和后期的克拉通化 有关。
五台绿岩带地层自下而上依次被划分为石咀、台怀和高凡3个亚群,区内BIF和VMS主要共生 产出于中部台怀亚群柏枝岩组的绿泥石阳起石片岩、云母石英片岩中和下部石咀亚群金岗库 组的角闪岩、黑云角闪变粒岩、云母片岩及黑云变粒岩中;其中,BIF矿体通常呈层状、似 层状与围岩整合产出,而VMS矿体则多呈层状、透镜状、块状,多数情况下其赋矿围直接为B IF和黄铁矿化燧石岩,局部可见少量变镁铁质火山岩;空间上BIF常位于VMS上盘,部分情况 下可见二者呈过渡现象(田永清等, 1996; Li et al., 2004; 牛向龙等, 2009)。Polat等(2 005)对该绿岩带中纯橄榄岩、斜辉橄榄岩的地球化学分析显示,其REE(稀土元素)和HFSE(高 场强元素)含量极低(如La=0.09×10-6~0.25×10-6,Ce=0.20×10-6 ~0.50×10-6,Y=0.31×10-6~2.2×10-6,Zr=1×10-6~ 11×10-6),经球粒陨石标准化后,其稀土元素配分模式呈“U型"((La/Sm)CN =0.81~1.92,(Gd/Yb)CN=0.19~0.74),与玻古安山岩类似,认为它们应为同 时期蛇绿岩套的残留物;此外,进一步的岩相学、地球化学研究表明,五台绿岩带同时发育 玄武岩、安山岩、英安岩和流纹岩等基性到酸性系列的火山岩,经球粒陨石标准化后,玄武 岩LREE相对于HREE略分馏((La/Sm)CN=1.6~4.1, (La/Yb)CN=2.1~6.0, (Gd/Yb)CN=1.2~1.7),在原始地幔标准化蛛网图中,其高场强元素Nb((Nb/Nb *)PM=0.2~0.5)和Ti((Ti/Ti*)PM=0.7~0.9)明显亏损;相对于玄武 岩,安山岩具有较高的Al2O3/TiO2(25~32)和Zr/Y比值(7~15)以及略低的Ti/Zr 比值(19~45),球粒陨石标准化后其LREE相对HREE分馏程度较高((La/Yb)CN=8.6~2 4);与流纹岩相比,安山岩的MgO、Fe2O3、Al2O3、CaO、K2O、P2O5、Sr、R b、V、Zr、LREE含量较 高 ,SiO2和Na2O含量较低,在球粒陨石标准化后的稀土元素配分图中,2类岩石的配分曲 线略右倾,安山岩轻、重稀土元素分馏程度更高,并且具更低的Al2O3/TiO2、Th/La 和Ti/V比值。综上所述,Polat等(2005)认为五台绿岩带形成于与洋脊俯冲作用有关的 弧前构造环境,其中VMS的产出与地幔构造窗有关。
鉴于华北克拉通演化的特殊性和复杂性,细致研究其中VMS与BIF铁矿成因联系具有重要意义 。首先,华北克拉通的VMS与BIF主要形成于新太古代(2.6~2.5 Ga),区别于国际上~2. 7 Ga和~1.8 Ga的2个共生峰期,并且该时间段的VMS矿床国外鲜有报道(Franklin et al., 2005),因此,开展此项研究一方面可填补VMS矿床研究的空白,另一方面可加强和完善VMS 与BIF的共生机制研究;其次,华北这2类矿床同时形成于GOE之前,通过对VMS矿床外围喷流 沉积岩和BIF的综合研究,可为同期的古海洋和大气环境提供指示信息,进一步通过与世界 范围内更为古老的以及GOE之后的BIF和VMS特征进行详细对比,可完整诠释早前寒武纪古环 境的变化规律;最后,清原和五台地区的VMS和BIF作为华北克拉通太古代晚期演化的特色产 物,其共生机制研究可为阐释绿岩带形成的构造背景提供约束,同时,该研究对于总结区域 成 矿规律及建立VMS_BIF成矿系统具有重要理论意义,可为进一步在华北克拉通寻找前寒武纪V MS和BIF矿产提供科学依据。
(1) 研究对象。目前,研究普遍侧重于2类矿床成矿作用与早期地球构造活动的联系(Isley et al., 1999; Bekker et al., 2010),以及VMS或BIF形成同时期古大气和古海洋环境的探 讨(Huston et al., 2004; Slack et al., 2007; 2009),且上述研究工作或着眼于VMS或针 对BIF,并未将二者的共生作为一个整体进行研究;同时,现有共生成因模型的建立同样是 基于太古代以独立的VMS、BIF以及深海沉积物的Fe、S同位素特征研究 (Bekker et al., 20 10 ; Farquhar et al., 2011),缺乏关于二者共生机制的探讨,如共生成矿的物质来源 、构造背景、海洋和大气环境等。
(2) 物质来源。海底火山活动或地幔柱作用诱发的热液系统一方面会形成VMS (Piercey, 20 10; Huston et al., 2014),另一方面会向海洋中输送大量铁质 (Isley, 1995; Isley et al., 1999; Barley et al., 2005);同时,太古代—古元古代出现了VMS与BIF的大规模共 生 现象 (Isley et al., 1999; Bekker et al., 2010; Rasmussen et al., 2012)。据此,前 人认为二者具有相同的成矿物质来源。然而,目前缺少典型共生实例研究的直接证据,证明 其成矿物质源自同一系统。
(3) 构造背景。太古代VMS与BIF共生现象主要出现于同时期绿岩带中,因此,绿岩带产出构 造背景的研究可为共生构造环境提供有力约束,但目前关于太古代绿岩带形成构造背景仍存 在地幔柱和类板块构造机制的争议(Ayer et al., 2002; Sproule et al., 2002; Wyman, 2 002; Taylor et al., 2003; Polat et al., 2005; Thurston et al., 2008; Lodge et al ., 2015);此外,太古代和古元古代均存在二者共生现象,这2个时期的成矿构造环境有无 差异同样缺乏研究。
(4) 共生环境。与VMS共生的BIF主要为Algoma型,受限于产出的构造背景,其地球化学特征 仅能够反映局限海盆火山活动或者海底热液条件(Bekker et al., 2010),鉴于此,目前基 于VMS与BIF共生特征研究获得的关于古海洋环境的认识是否具普遍意义,可能是值得商榷的 。
(5) BIF的大规模沉淀通常与VMS成矿高峰相对应(Rasmussen et al., 2012),然而精确的年 代学研究表明,2.6~2.4 Ga间沉淀了巨量的BIF,其总量占前寒武纪已知铁资源储量的70%( B ekker et al., 2010),但是这期间关于VMS矿床产出的报道并不如人们预期的那么多(Frank lin et al., 2005),这种BIF大规模产出却缺乏同期VMS现象的成因尚不清楚。
总体而言,前寒武纪VMS与BIF铁矿共生需要特定的构造背景和环境条件,是地壳和古环境演 化耦合作用的结果,但这种耦合作用的机制是什么,这是亟待解决的问题。
志谢感谢匿名审稿人对稿件的评审及提出的重要建议,感谢中国科学院地质与 地球物理研究所郑梦天博士在写作过程中就相关问题的讨论。
Abrams C E and Mcconnell K I. 1982a. The relationship of banded iron formation t o mines and prospects of western Georgia[R].
Abrams C E and Mcconnell K I. 1982b. Banded iron formation: A key marker unit fo r massive sulfide exploration in the high grade metamorphic terrain of western G eorgia[R].
Abrams C E and Mcconnell K I. 1984. Geologic setting of volcanogenic base and pr ecious metal deposits of the West Georgia Piedmont: A multiply deformated metavo lcanic terrain[J]. Econ. Geol., 79(7): 1521_1539.
Anderson P. 1989. Proterozoic plate tectonic evolution of Arizona[J]. Arizona Geological Society Digest, 17: 17_55.
Angerer T, Kerrich R and Hagemann S G. 2013. Geochemistry of a komatiitic, bonin itic, and tholeiitic basalt association in the Mesoarchean Koolyanobbing greenst one belt, southern Cross Domain, Yilgarn craton: Implications for mantle sources and geodynamic setting of banded iron formation[J]. Precambrian Research, 224 :110_128.
Ayer J, Amelin Y, Corfu F, Kamo S, Ketchum J F, Kwok K and Trowell N F. 2002. Ev olution of the abitibi greenstone belt based on U_Pb geochronology: Autochthonou s volcanic construction followed by plutonism, regional deformation and sediment ation[J]. Precambrian Research, 115(s1_4): 63_95.
Bai J and Dai F Y. 1998. Archean crust of China[A]. In: Ma X Y and Bai J, eds. P recambrian crust evolution of China[C]. Beijing: Geological Publishing House. 15_86.
Barley M E, Bekker A and Krape B. 2005. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen[J]. Earth Planetary Science Letters, 238(1_2): 156_171.
Bekker A, Holland H D, Wang P L, Rumble D, Stein H J, Hannah J L, Coetzee L L an d Beukes N J. 2004. Dating the rise of atmospheric oxygen[J]. Nature, 427(6970 ): 117_120.
Bekker A, Slack J F, Planavsky N, Krape B, Hofmann A, Konhauser K O and Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay am ong mantle, tectonic, oceanic and biospheric processes[J]. Econ. Geol., 105: 467_5 08.
Beukes N J and Klein C. 1992. Models for iron formation deposition[A]. In: Schop h J W and Klein C, eds. The Proterozoic biosphere: A multidisciplinary study[M ]. New York: Cambridge University Press. 146_151.
Bühn B, Stanistreet I G, Okrusch M, Stanistreet I G and Okrusch M. 1992. Late P roterozoic outer shelf manganese and iron deposits at Otjosondu (Namibia) relate d to the Damaran oceanic opening[J]. Econ. Geol., 87(5): 1393_1411.
Cameron E M. 1982. Sulphate and sulphate reduction in Early Precambrian oceans[ J]. Nature, 296(2): 145_148.
Canfield D E and Teske A. 1996. Late Proterozoic rise in atmospheric oxygen conc entration inferred from phylogenetic and sulphur isotope studies[J]. Nature, 3 82(6587): 127_132.
Canfield D E. 1998. A new model for Proterozoic ocean chemistry[J]. Nature, 39 6(396): 450_453.
Cloud P. 1973. Paleoecological significance of the banded iron formation[J] . Econ. Geol., 68(7): 1135_1143.
Cloud P E. 1972. A working model of the primitive Earth [J]. Am. J. Sci., 272: 537_548.
Cornell D H, Pettersson A, Whitehouse M J and Scherstén A. 2009. A new chronost ratigraphic paradigm for the age and tectonic history of the mesoproterozoic bus hmanland ore district, South Africa[J]. Econ. Geol., 104(3): 385_404.
Deb M and Pal T. 2004a. Geology and genesis of the base metal sulphide deposits in the Dariba_Rajpura_Bethumni belt, Rajasthan, India[A]. In: Deb M and Goodfe ll ow W D, eds. Sediment_hosted lead_zinc sulphide deposits[C]. New Delhi: Narosa Publishing. 304_327.
Deb M and Thorpe R I. 2004b. Geochronological constraints in the Precambrian geo logy of Rajasthan and their metallogenic implications[A]. In: Deb M and Go odfell ow W D, eds. Sediment_hosted lead_zinc sulphide deposits[C]. New Delhi: Narosa Publishing. 246_263.
Farquhar J, Bao H M and Thiemens M. 2000. Atmospheric influence of earths earli est sulfur cycle[J]. Science, 289(5480):756_758.
Farquhar J and Wing B A. 2003. Multiple sulfur isotopes and the evolution of the atmosphere[J]. Earth Planetary Science Letters, 213(1_2):1_13.
Farquhar J, Zerkle A L and Bekker A. 2011. Geological constraints on the origin of oxygenic photosynthesis[J]. Photosynthesis Research, 107(1): 11_36.
Findlay J M, Parrish R R, Birkett T C and Watanabe D H. 1995. U_Pb ages from the Nimish Formation and Montagnais glomeroporphyritic gabbro of the Central New Qu ébec Orogen, Canada[J]. Can. J. Earth Sci., 32(8): 1208_1220.
Foustoukos D I and Bekker A. 2008. Hydrothermal Fe(II) oxidation during phase se paration: Relevance to the origin of Algoma_type BIFs [J]. Geochim. Cosmochim. Acta, 72(Supp.): 280.
Fralick P, Davis D W and Kissin S A. 2002. The age of the Gunflint Formation, On tario, Canada: Single zircon U_Pb age determinations from reworked volcanic ash [J]. Can. J. Earth Sci., 39(7): 1085_1091.
Franklin J M, Gibson H L, Jonasson I R and Galley A G. 2005. Volcanogenic massiv e sulfide deposits[C]. Econ. Geol. 100th Anniversary Volume. 523_560.
Galley A G, Hannington M D and Jonasson I R. 2007. Volcanogenic massive sulphide deposits[A]. Mineral deposits of Canada: A syntesis of major deposit type s[C]. Newfoundland: Mineral Deposits Division Special Publication. 141_162.
Goodwin A M. 1973. Archean iron_formations and tectonic basins of the Canadian S hield[J]. Econ. Geol., 68(7): 916_933.
Gross G A. 1995. The distribution of rare earth elements in iron_formations[J] . Global Tectonics and Metallogeny, 5: 63_67.
Gu L X, Tang X Q, Zheng Y C, Wu C Z, Tian Z M, Lu J J, Xiao X J and Ni P. 2004. Deformation, metamorphism and ore_component remobilization of the Archean massiv e sulphide deposit at Hongtoushan, Liaoning Province[J]. Acta Petrologica Sini ca, 20(4): 923_934 (in Chinese with EnglishAbstract).
Gu L X, Zheng Y C, Tang X Q, Zaw K, Della_Pasque F, Wu C Z, Tian Z M, Lu J J, Ni P, Li X, Yang F T and Wang X W. 2007. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan VHMS deposit, NE Chi na[J]. Ore Geology Reviews, 30(1): 1_29.
Habicht K S, Gade M, Thamdrup B, Berg P and Canfield D E. 2002. Calibration of s ulfate levels in the Archean ocean[J]. Science, 298: 2372_2374.
Hannah J L, Bekker A, Stein H J, Markey R J and Holland H D. 2004. Primitive Os and 2316 Ma age for marine shale: Implications for Paleoproterozoic glacial even ts and the rise of atmospheric oxygen[J]. Earth Planetary Science Letters, 225(1_2):43_52.
Haugaard R, Frei R, Stendal H and Konhauser K O. 2013. Petrology and geochemistr y of the ~2.9 Ga Itilliarsuk banded iron formation and associated supracrustal r ocks, West Greenland: Source characteristics and depositional environment[J]. Precambrian Research, 229: 150_176.
Hayes J M, Lambert I B and Strauss H. 1992. The sulfur_isotope record[A]. In: Sc hopf J W and Klein C,eds. The Proterozoic biosphere_a multidisciplinary study[C ]. New York: Cambridge University Press. 129_132.
Hoffman P F. 1988. United Plates of America, the birth of a craton: Early Proter ozoic assembly and growth of Laurentia[J]. Annual Review of Earth and Planetar y Sciences, 16(1): 543_603.
Holland H D. 1973. The oceans: A possible source of iron in iron_formations[J] . Econ. Geol., 68(7): 1169_1172.
Holland H D. 1984. The chemical evolution of the atmosphere and oceans[M]. New York: Princeton University Press. 1_582.
Holland H D and Beukes N J. 1990. A paleoweathering profile from Griqualand West , South Africa: Evidence for a dramatic rise in atmospheric oxygen between 2.2 a nd 1.9 bybp[J]. Am. J. Sci., 290_A(4): 1_34.
Holland H D. 2002. Volcanic gases, black smokers, and the Great Oxidation event [J]. Geochim. Cosmochim. Acta, 66(21): 3811_3826.
Holland H D. 2006. The oxygenation of the atmosphere and oceans[J]. Philosophi cal Transactions of the Royal Society B Biological Sciences, 361(361): 903_915.
Hollis S P, Yeats C J, Wyche S, Barnes S J, Ivanic T J, Belford S M, Davidson G J, Roache A J and Wingate M T D. 2015. A review of volcanic_hosted massive sulfi de (VHMS) mineralization in the Archaean Yilgarn Craton, western Australia: Tect onic, stratigraphic and geochemical associations[J]. Precambrian Research, 260 : 113_135.
Huston D L and Logan G A. 2004. Barite, BIFs and bugs: Evidence for the evolutio n of the Earths early hydrosphere[J]. Earth Planetary Science Letters, 220(1_ 2): 41_55.
Huston D L, Morant P, Pirajno F, Cummins B, Baker D and Mernagh T P. 2007. Paleo archean mineral deposits of the Pilbara Craton: Genesis, tectonic environment an d comparisons with Younger deposits[J]. Developments in Precambrian Geolog y, 15(1): 411_450.
Huston D L, Pehrsson S, Eglington B M and Zaw K. 2010. The geology and metalloge ny of volcanic_hosted massive sulfide deposits: Variations through geologic time and with tectonic setting[J]. Econ. Geol., 105(3): 571_591.
Huston D L, Champion D C and Cassidy K F. 2014. Tectonic controls on the endowme nt of Neoarchan cratons in volcanic_hosted massive sulfide deposits: Evidence fr om lead and neodymium isotopes[J]. Econ. Geol., 109(1): 11_26.
Isley A E. 1995. Hydrothermal plumes and the delivery of iron to banded iron formation[J]. The Journal of Geology, 103(2): 169_185.
Isley A E and Abbott D H. 1999. Plume_related mafic volcanism and the deposition of banded iron formation[J]. Journal of Geophysical Research, 1041(B7): 15461 _15477.
James H L. 1983. Distribution of banded iron_formation in space and time[J]. D evelopments in Precambrian Geology, 6: 471_490.
Klein C. 2005. Some Precambrian banded iron_formations (BIFs) from around the wo rld: their age, geologic setting, mineralogy, metamorphism, geochemistry, and or igin [J]. Am. Mineral., 90(10): 1473_1499.
Kump L R and Seyfried W E. 2005. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers[J]. Earth Planetary Science Letters, 235: 654_66 2.
Li B L, Huo L and Li Y S. 2007. Several problems involved in the study of banded iron formations (BIFs) [J]. Acta Mineralogica Sinica, 27(2): 205_210 (in Chin ese with EnglishAbstract).
Li J H, Kusky T, Feng J, Polat A. 2004. Neoarchean massive sulfide of Wutai Mo untain, North China: A black smoker chimney and mound complex within 2.50 Ga_o ld oceanic crust[J]. Developments in Precambrian Geology, 13(4): 339_362.
Li W Y. 2007. Classification, distribution and forming setting of massive sulfid e deposits [J]. Journal of Earth Sciences and Environment, 29(4): 331_344 (in Chinese with EnglishAbstract).
Liaoning Bureau of Geology and Mineral Resources. 1989. Regional geology of Liao ning Province[M]. Beijing: Geological Publishing House. 1_856 (in Chinese).
Lindberg P A and Gustin M S. 1987. Field_trip guide to the geology, structure, a nd alteration of the Jerome, Arizona ore deposits[A]. In: Davis G H and Vanden Do lder E M, eds. Geologic diversity of Arizona and its margins[C]. Arizona Burea u of Mines and Mineral Technology Special Paper, 5: 176_181.
Lindberg P A. 1986. Geology of the copper chief mine, Jerome district, Arizona[ J]. Arizona Geological Society Digest, 16: 343_349.
Lodge R W D, Gibson H L, Stott G M, Franklin J M and Hudak G J. 2015. Geodynamic setting, crustal architecture, and VMS metallogeny of ca. 2720 Ma greenstone be lt assemblages of the northern Wawa subprovince, Superior Province[J]. Can. J. Earth Sci., 52(3): 196_214.
Lottermoser B G. 1989. Rare earth element study of exhalites within the Willyama Supergroup, Broken Hill Block, Australia[J]. Mineralium Deposita, 24(2): 92_99.
Malinowski M, White D J, Mwenifumbo C J, Salisbury M, Bellefleur G, Schmitt D, D ietiker B, Schetselaar E and Duxbury A. 2008. Seismic exploration for VMS deposi ts within the Paleoproterozoic Flin Flon Belt, Trans_Hudson Orogen, Canada[J]. Geophysical Research, 10: 3745.
Mercier_Langevin P, Gibson H L, Hannington M, Goutier J, Monecke T, Dubé B and Houlé M G. 2014. A special issue on Archean Magmatism, volcanism, and ore depos its: Part 2. volcanogenic massive sulfide deposits [J]. Econ. Geol., 109(1): 1 _9.
Meyer C. 1988. Ore deposits as guides to geologic history of the Earth[J]. Annual Review of Earth and Planetary Sciences, 16(1): 147_171.
Mojzsis S J, Coath C D, Greenwood J P, Mckeegan K D and Harrison T M. 2003. Mass _independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides det ermined by ion microprobe analysis[J]. Geochim. Cosmochim. Acta, 67(9): 1635_1 658.
Niu X L, Li J H, Feng J. 2009. Origin of the Neoarchean massive sulfide deposi ts in Wutaishan Mt: An indication for the submarine exhalation from the microstr uctures[J]. Advances in Earth Science, 9(24): 1009_1014 (in Chinese with Engl ishAbstract).
Ono S, Fayek M and Ohmoto H. 2000. Origin of uraninite in the Elliot lake distri ct, Canada and the atmospheric oxygen level of 2.3 Ga Earth[J]. Evolution of t he Atmosphere, Ocean, Crust and Biosphere, 67_74.
Page R W, Stevens B P J and Gibson G M. 2005. Geochronology of the sequence host ing the Broken Hill Pb_Zn_Ag orebody, Australia[J]. Econ. Geol., 100(100): 633 _661.
Partin C A, Bekker A, Planavsky N J, Scott C T, Gill B C, Li C, Podkovyrov V, Ma slov A, Konhauser K O, Lalonde S V, Love G D, Poulton S W and Lyons T W. 2013a. Large_scale fluctuations in Precambrian atmospheric and oceanic oxygen levels fr om the record of U in shales[J]. Earth Planetary Science Letters, 369_370(3): 284_293.
Partin C A, Lalonde S V, Planavsky N J, Bekker A, Rouxel O J, Lyons T W and Konh auser K O. 2013b. Uranium in iron formations and the rise of atmospheric oxygen [J]. Chemical Geology, 362(1): 82_90.
Pavlov A A and Kasting J F. 2002. Mass_independent fractionation of sulfur isoto pes in Archean sediments: Strong evidence for an anoxic Archean atmosphere[J]. Astrobiology, 2(1): 27_41.
Peng P, Wang C, Wang X P and Yang S Y. 2015. Qingyuan high_grade granite_greenst one terrain in the eastern North China Craton: Root of a Neoarchaean arc[J]. T ectonophysics, 662(1): 7_21.
Peng Z D, Zhang L C, Wang C L and Zhu M T. 2015. The spatial and genetic relatio nship of VMS and BIF in the Qingyuan Greenstone Belt[J]. Acta Mineralogica Sin ica, 35(s): 539_540 (in Chinese).
Peter J M. 2003. Ancient iron_rich metalliferous sediments (iron_formations): Th eir genesis and use in the exploration for stratiform base metal sulphide deposi ts, with examples from the Bathurst Mining Camp[A]. In: Lentz D R, ed. Geoche mi stry of sediments and sedimentary rocks: Considerations to mineral deposit_formi ng environments[C]. Canada: Geological Association of Canada, Geo Text, 4: 145 _176.
Piercey S J. 2010. An overview of petrochemistry in the regional exploration for volcanogenic massive sulfide (VMS) deposits[J]. Geochemistry Exploration Envi ronment Analysis, 10(2): 119_136.
Planavsky N, Bekker A, Rouxel O J, Kamber B, Hofmann A, Knudsen A and Lyons T W. 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozo ic Fe formations revisited: New perspectives on the significance and mechanisms of deposition[J]. Geochim. Cosmochim. Acta, 74(22): 6387_6405.
Plimer I R. 1979. Reply to D. Larges comment [J]. Mineralium Deposita, 14(1): 125_127.
Polat A, Kusky T, Li J H, Fryer B, Kerrich R and Patrick K. 2005. Geochemistry o f Neoarchean (ca. 2.55~2.50 Ga) volcanic and ophiolitic rocks in the Wutaisha n g reenstone belt, central orogenic belt, North China Craton: Implications for geod ynamic setting and continental growth[J]. Geological Society of America Bullet in, 117(11/12): 1387_1399.
Qi S J, Wang C Y, Yang J P, Gao Z X, Li Y K and Shao Z G. 1983. The origin of th e Precambrian metavolcanic_sedimentary rock systems and the massive sulfide depo sits in Xingshutai Neiqiu, Hebei Province[J]. Journal of Hebei College of Geol ogy, 22(2): 1_16 (in Chinese).
Rasmussen B, Fletcher I R, Bekker A, Muhling J R, Gregory C J and Thorne A M. 20 12. Deposition of 1.88_billion_year_old iron formations as a consequence of rapi d crustal growth[J]. Nature, 484(1): 498_501.
Rye R and Holland H D. 1998. Geology and geochemistry of paleosols developed on the Hekpoort Basalt, Pretoria Group, South Africa[J]. Am. J. Sci., 300(2): 85_141.
Schneider D A, Bickford M E, Cannon W F, Schulz K J and Hamilton M A. 2002. Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergrou p: Implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region[J]. Can. J. Earth Sci., 39(6): 999_1012.
Sharman E R, Taylor B E, Minarik W G, Dubé B and Wing B A. 2015. Sulfur isotope and trace element data from ore sulfides in the Noranda district (Abitibi, Cana da): Implications for volcanogenic massive sulfide deposit genesis[J]. Mineral ium Deposita, 50(5): 591_606.
Slack J F, Grenne T, Bekker A, Rouxel O J and Lindberg P A. 2007. Suboxic deep s eawater in the Late Paleoproterozoic: Evidence from hematitic chert and iron for mation related to seafloor_hydrothermal sulfide deposits, Central Arizona, USA[ J]. Earth Planetary Science Letters, 255(1_2): 243_256.
Slack J F, Grenne T and Bekker A. 2009. Seafloor_hydrothermal Si_Fe_Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma de ep seawater[J]. Geosphere, 5(3): 302_314.
Sproule R A, Lesher C M, Ayer J A, Thurston P C and Herzberg C T. 2002. Spatial and temporal variations in the geochemistry of komatiites and komatiitic basalts in the Abitibi greenstone belt[J]. Precambrian Research, 115(1): 153_186.
Stalder M and Rozendaal A. 2004. Apatite nodules as an indicator of depositional environment and ore genesis for the Mesoproterozoic Broken Hill_type Gamsberg Z n_Pb deposit, Namaqua Province, South Africa[J]. Mineralium Deposita, 2(39): 6 34_637.
Sun D Y, Liu Z H, Lin X C and Zheng C Q. 1993. Metamorphism and tectonic evoluti on of Early Precambrian rocks in the Fushun area, northern Liaoning Provience[M ]. Beijing: Seimological Press. 99_120 (in Chinese).
Syme E C and Bailes A H. 1993. Stratigraphic and tectonic setting of Early Prote rozoic volcanogenic massive sulfide deposits, Flin Flon, Manitoba[J]. Econ. Ge ol., 88(3): 566_589.
Taylor B and Martinez F. 2003. Back_arc basin basalt systematics[J]. Earth Pla netary Science Letters, 210(3_4): 481_497.
Thurston P C, Ayer J A, Goutier J and Hamilton M A. 2008. Depositional gaps in a bitibi Greenstone Belt stratigraphy: A key to exploration for syngenetic mineral ization[J]. Econ. Geol., 103(6): 1097_1134.
Tian Y Q, Peng Q M. 1986.The new viewpoint of the forming environment and defo rmation features for Banyukou Formation of Wutai Group[J]. Journal of Geology an d Mineral Resource of the North China, 11(1): 137_141 (in Chinese with EnglishAbstract).
Thurston P C, Kamber B S and Whitehouse M. 2012. Archean cherts in banded iron f ormation: Insight into Neoarchean ocean chemistry and depositional processes[J ]. Precambrian Research, s 214_215(3): 227_257.
Trendall A F. 2002. The significance of iron_formation in the Precambrian strati graphic record[J]. Special Publication International Association of Sedimentol ogists, 33: 33_66.
Van Kranendonk M J, Philippot P, Lepot K, Bodorkos S and Pirajno F. 2008. Geolog ical setting of Earths oldest fossils in the ca. 3.5 Ga dresser formation, Pilb ara Craton, western Australia[J]. Precambrian Research, 167(s1_2): 93_124.
Veizer J. 1976. Evolution of ores of sedimentary affiliation through geologic hi story; relations to the general tendencies in evolution of the crust, history, a tmosphere and biosphere[J]. Supergene and Surficial Ore Deposits, 3: 1_41.
Veizer J, Compston W, Hoefs J and Nielsen H. 1982. Mantle buffering of the early oceans[J]. Naturwissenschaften, 69(69): 173_180.
Veizer J, Laznicka P and Jansen S L. 1989. Mineralization through geologic time: recycling perspective[J]. Am. J. Sci., 289: 484_524.
Wan Y S, Song B, Yang C and Liu D Y. 2005. Zircon SHRIMP U_Pb geochronology of a rchaean rocks from the Fushun_Qingyuan area, Liaoning Province and its geologica l significance[J]. Acta Geologica Sinica, 79(1): 78_87 (in Chinese with Englis hAbstract).
Wang C L, Zhang L C, Liu L and Dai Y P. 2012. Research progress of Precambrian i ron formations abroad and some problems deserving further discussion[J]. Miner al Deposits, 31(6): 1311_1325 (in Chinese with EnglishAbstract).
Wu K K, Zhao G C, Sun M, Yin C Q, He Y H and Tam P Y. 2013. Metamorphism of the northern Liaoning Complex: Implications for the tectonic evolution of Neoarchean basement of the eastern block, North China Craton[J]. Geoscience Frontiers, 4 (3):305_320.
Wu M L, Lin S F, Wan Y S and Gao J F. 2016. Crustal evolution of the eastern blo ck in the North China Craton: Constraints from zircon U_Pb geochronology and Lu_ Hf isotopes of the northern Liaoning complex[J]. Precambrian Research, 275 : 35_47.
Wyman D A, Kerrich R and Polat A. 2002. Assembly of archean cratonic mantle lith osphere and crust: Plume_arc interaction in the Abitibi_Wawa subduction_accretio n complex[J]. Precambrian Research, 115(1): 37_62.
Yu F J. 2006. The study of metallogenic model and prospecting pattern of Hongtou shan_type deposit (Docter thesis) [D]. Supervisor: Wang E D. Shengyang: Northe astern University. 1_109 (in Chinese).
Zaleski E and Peterson V L. 1995. Depositional setting and deformation of massiv e sulfide deposits, iron_formation and associated alteration in the manitouwadge greenstone belt, superior province, Ontario[J]. Econ. Geol., 90(8): 2244_ 2261.
Zhai M G, Yang R Y, Lu W J and Zhou J. 1985. Geochemistry and evolution of the Q ingyuan Archaean granite_greenstone terrain, NE China[J]. Precambrian Research , 27(1_3): 37_62.
Zhai M G. 2011. Cratonization and the Ancient North China Continent: A summary a nd review[J]. Science China Earth Science, 54: 1110_1120 (in Chinese with Engl ishAbstract).
Zhang L C, Zhai M G, Zhang X J, Xiang P, Dai Y P, Wang C L and Pirajno F. 2012. Formation age and tectonic setting of the Shirengou Neoarchean banded iron depo sit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U_P b dating[J]. Precambrian Research, s 222_223: 325_338.
Zhang L C, Zhai M G, Wan Y S, Guo J H, Dai Y P, Wang C L and Liu L. 2012. Study of the Precambrian BIF_iron deposits in the North China Craton: Progresses and questions[J]. Acta Petrologica Sinica, 28(11): 3431_3445 (in Chinese with Engl ishAbstract).
Zhang Y J. 2014. Formation, evolution and metallogenesis of granite_greenstone b elt in Qingyuan, Liaoning Province (Docter thesis)[D]. Supervisor: Sun F Y . Changchun: Jilin University. 1_228 (in Chinese).
Zhang Y J, Sun F Y, Huo L, Li B L, Ma F, Qian Y and Liu Z D. 2014. Metallogenic age and ore remobilization of Shujigou coper_zinc deposit, Liaoning Province, Ch ina[J]. Journal of Jilin University (Earth Science Edition), 44(3): 786_795 (i n Chinese with EnglishAbstract).
Zhu M T, Zhang L C, Dai Y P and Wang C L. 2015. In situ zircon U_Pb dating and O isotopes of the Neoarchean Hongtoushan VMS Cu_Zn deposit in the North China Cra ton: Implication for the ore genesis[J]. Ore Geology Reviews, 67(67): 354_367.
附中文参考文献
顾连兴, 汤晓茜, 郑远川, 吴昌志, 田泽满, 陆建军, 肖新建, 倪培. 2004. 辽宁 红透 山铜锌块状硫化物矿床的变质变形和成矿组分再活化[J]. 岩石学报, 20(4): 923_934.
李碧乐, 霍亮, 李永胜. 2007. 条带状铁建造(BIFs) 研究的几个问题[J]. 矿物学报 , 27(2): 205_210.
李文渊. 2007. 块状硫化物矿床的类型、分布和形成环境[J]. 地球科学与环境学报, 29( 4): 331_344.
辽宁省地质矿产局. 1989. 辽宁省区域地质志[M]. 北京: 地质出版社. 1_856.
牛向龙, 李江海, 冯军. 2009. 五台山新太古代块状硫化物矿床成矿作用研究——海底喷 流沉积成因显微构造证据[J]. 地球科学进展, 9(24): 1009_1014.
彭自栋, 张连昌, 王长乐, 朱明田. 2015. 清原绿岩带VMS和BIF矿床的时空及成因关系[J ]. 矿物学报, 35(增): 539_540.
祁思敬, 王承义, 杨剑平, 高占兴, 李运科, 邵振国. 1983. 河北内丘杏树台前寒武纪变质 火山岩系及层状硫化物矿床成因[J]. 河北地质学院学报, 22(2): 1_16.
孙德育, 刘正宏, 凌贤长, 郑长青. 1993. 辽北抚顺东部地区前寒武纪地质及构造演化[M ]. 北京: 地震出版社. 99_120.
田永清, 彭齐鸣. 1996. 五台群“板峪口组”形成环境与变形特征的新认识[J]. 华北地 质矿产杂志, 11(1): 137_141.
万渝生, 宋彪, 杨淳, 刘敦一. 2005. 辽宁抚顺_清原地区太古宙岩石SHRIMP锆石U_Pb年代 学及其地质意义[J]. 地质学报, 79(1): 78_87.
王长乐, 张连昌, 刘利, 代堰锫. 2012. 国外前寒武纪铁建造的研究进展与有待深入探讨的 问题[J]. 矿床地质, 31(6): 1311_1325.
于凤金. 2006. 红透山式矿床成矿模式与找矿模型研究 (博士论文)[D]. 导师: 王恩 德. 沈阳:东北大学. 1_109.
翟明国. 2011. 克拉通化与华北陆块的形成[J]. 中国科学:地球科学, 41(8): 1037_1046 .
张连昌, 翟明国, 万渝生, 郭敬辉, 代堰锫, 王长乐, 刘利. 2012. 华北克拉通前寒武纪B IF铁矿研究: 进展与问题[J]. 岩石学报, 28(11): 3431_3445.
张雅静. 2014. 辽宁清原花岗_绿岩带的演化及其成矿作用研究 (博士论文)[D]. 导师: 孙丰月. 长春: 吉林大学. 1_228.
张雅静, 孙丰月, 霍亮, 李碧乐, 马芳, 钱烨, 刘哲东. 2014. 辽宁树基沟铜锌矿成矿时代 及矿石再活化机制[J]. 吉林大学学报: 地球科学版, 44(3): 786_795.