(1 成都理工大学地球科学学院, 四川 成都610059; 2 中国地质科学院矿产资源研究 所 国土资源部成矿作用与资源评价重 点实验室, 北京100037; 3 中国地质大 学, 北京100083; 4. 西藏华钰矿业股份有限公司, 西藏 拉萨850000)
第一作者简介唐攀, 男, 1989年生, 博士研究生, 主要从事矿床勘查与评价工作。 Email: tangpan168@163.com <>br**通讯作者唐菊兴, 男, 1964年生, 博士生导师, 研究员, 主要从事矿床学和固体 矿产勘查与评价研究工作。 Email: tangjuxing@126.com
收稿日期2016_05_26
本文由公益性行业专项(编号: 201511022_02, 201511017)、国家自然科学基金项目( 编号: 41302060)和中国地质科学院基本科研业务费(编号: YYWF201608)联合资助
(1 College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, Sichuan, China; 2 MLR Key Laboratory of Metallogeny and Mineral Assessment, I ns titute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100 037, China; 3 China University of Geosciences, Beijing 100083, China; 4 Tibet Huayu Mining Development Co., Ltd., Lhasa 850000, Tibet, China)
黑云母,三八面体云母,分子式一般为(K, Na, Ca, Ba)(Fe2+, Fe3+, Mg, Ti4+, Mn, Al)3(Al, Si)4O10(OH, F, Cl)2,是长英质岩浆岩中 最常见的含水镁铁质成岩硅酸盐矿物,既可以形成于侵入体结晶过程,也可以形成于岩浆热 液蚀变过程(Jacobs et al., 1976; 1979)。黑云母的结构和化学成分对岩浆或岩浆热液 的物理化学条件(温度、压力、氧逸度和成分)十分敏感,热动力条件的变化可以控制黑云 母复杂的化学成分,因此,黑云母化学成分可以有效地指示岩浆_热液系统物化条件(Wones et al., 1965; Czamanske et al., 1973; Speer, 1987)。黑云母的研究越来越受到重视 ,尤其是在斑岩成矿系统中,黑云 母矿物化学对岩浆性质、热液蚀变以及成矿过程具有重要的指示意义(Beane, 1974; Jacob s et al., 1976; 1979; Hendry et al., 1981; 1985; Chivas, 1981; Selby et al., 200 0; Ayati et al., 2008; Boomeri et al., 2009; 2010; Siahcheshm et al., 2012; Afsh ooni et al., 2013; Parsapoor et al., 2015)。
对中国黑云母的研究相对较少,主要集中于岩浆黑云母对岩浆岩性质和成矿的指示意义(洪 大卫,1982;周作侠,1986;张培萍等,1991;王晓霞,1998;熊小林等,2001;胡建等, 2006;楼亚儿等,2006;李鸿莉等,2007a;2007b;秦克章等,2009;刘彬等,2010;章健 等,2011;弥佳茹等,2014;郭耀宇等,2015;陶继华等,2015;牛晓露等,2015;武宗林 等,2015;陈慧军等,2015),少量研究热液黑云母对矿化蚀变的指示意义(杨敏之,1964 ;傅金宝,1981;刘立钧等,1984;王葳平等,2012;唐攀等,2016)。本文在前人大量的 研究成果基础之上,结合作者的研究成果,系统地介绍了黑云母矿物化学研究进展,以期进 一步促进对黑云母矿物化学的深入研究,为斑岩铜多金属矿床的找矿矿物学和成因矿物学研 究提供基础资料。
热液黑云母产状明显不同于岩浆黑云母,又可以分为热液交代黑云母(交代角闪石和岩浆黑 云母,极少交代斜长石)和热液新生黑云母(交代黑云母以外的其他热液次生黑云母)(Ja cobs et al., 1976; 1979;傅金宝,1981; Selby et al., 2000; Ayati et al., 2008; 唐攀等,2016)。热液交代黑云母沿着边缘和裂隙部分或全部交代角闪石和岩浆黑云母,重 结晶成细鳞片状集合体,呈半自形_他形产出。
热液新生黑云母可以分为弥散状黑云母和脉状黑云母(Jacobs et al., 1976; 1979; Selby et al., 2000; Ayati et al., 2008; 唐攀等,2016)。弥散状黑云母常呈极细_细的片状 或少量的片状集合体散布于岩体中,其明显与热液蚀变有关。对于很弱的或者没有明显的热 液蚀变,这种弥散状的黑云母既可以是岩浆黑云母,也可以是热液黑云母。脉状黑云母 常呈自形_半自形_他形,粗_中粒片状,与石英和金属硫化物等共生。
岩浆黑云母和热液黑云母不仅在岩相学上存在较大的差别,在矿物化学性质方面也存在差异 。2类黑云母成因存在较大差别,对于客观地识别其指示意义,正确地区分2类黑云母至关重 要。Beane(1974)研究北美斑岩铜矿床中的黑云母,得出岩浆黑云母Mg/Fe<1.0,蚀变黑 云母Mg/Fe>1.5和Fe3+/Fe2+<0.3;用Fe3+_Fe2+_Mg2+三 角图解可以区分岩浆黑云母和蚀变黑云母。
Nachit等(2005)用10TiO2_FeO*_MgO(FeO*=FeOtot+MnO)三角分类图区分岩 浆 黑云母、重结晶黑云母和新生黑云母(图1),选择这3个端员的原因为: ① 黑云母2个端 员——金云母(Mg)和铁云母(Fe2+),其中,黑云母的XFeO*=FeO*/ (FeO*+MgO)值取决于岩体的性质,其值从基性岩体(XFeO*≈0)到长英质岩 体(XFeO*≈1)为增加(Abrecht et al., 1988);② 黑云母Ti含量与热条件 有关(Robert, 1976),并且随岩体的XFeO*值变化(Abrecht et al., 1988) ; ③ 蚀变黑 云母常与重结晶的Fe_Ti氧化物(金红石、锐钛矿、钛铁矿)有关,并且能通过光学显微镜 明显的观察到(如褪色,多色性减弱等)。
傅金宝(1981)通过整理中国一些斑岩铜矿床中黑云母的数据,得出岩浆黑云母具有高Ti、 低Al的特点,w(TiO2)>3%,w(Al2O3)<15%;热液新生黑云母则 低Ti、高Al,w(TiO2)<3%(多数<2%),w(Al2O3)>15%;热 液交代黑云母的Ti、Al含量介于 前两者之间,表明交代过程中元素具有继承性。反映在Al 2O3/TiO2比值上,岩浆黑云母多<3.5%,热液黑云母多7,热液交代黑云母同 样居前两者之间。 黑云母中Ti含量与热条件有关(Robert, 1976),岩浆黑云母形成温度较高,导致其Ti含量普遍高于热液黑云母。
图 1黑云母10TiO2_FeO*_MgO分类图解 (据Nachit et al, 2005) Fig. 110TiO2_FeO*_MgO classification diagram of biotite compositions (af ter Nachit et al, 2005) FeO*=FeOtot+MnO |
在斑岩矿床中,不同蚀变带的黑云母矿物化学也具有较大的差别。Jaconbs等(1979)研究S anta Rita斑岩铜矿床黑云母得出,绢英岩化带热液黑云母具有明显的高Al含量。Ayati等( 2008)研究Dalli斑岩铜矿床热液黑云母得出,钾化带热液黑云母的FeO、TiO2、MnO、K 2O、Na2O含量比绢英岩化带高。Boomeri等(2010)研究Sarcheshmeh斑岩铜矿床黑云母得 出,与绢英岩化带相比,钾化带热液黑云母具有较高的Mg含量。Afshooni等(2013)研究Ka hang斑岩铜矿床热液黑云母得出,与绢英岩化带相比,钾化带热液黑云母具有明显的低Al和 高K、Fe、Ti、Na特征。
图 2黑云母的Ti_Mg/(Mg+Fe)图解(据Henry et al., 2005) Fig. 2Ti_Mg/(Mg+Fe) variation diagram for estimation of temperature (after Henry et al., 2005) |
Wones等(1965)研究表明,黑云母成分变化可以用于地质温度估算,提出logf(O2)_ t地质 温度计。该温度计适用于高温高压条件下,而不能扩展到近大气压和100~300℃的硅酸盐_ 硫 化物热液系统中地质温度估算。Beane(1974)提出热液黑云母地质温度计——t_X phl,计算北美Santa Rita、Ray、Safford、Bingham、Hanover和Galore Creek斑岩矿床 钾化带中热液黑云母形成温度,热液黑云母与磁铁矿和钾长石共生(图3)。Ayati等(2008 )和Afshooni等(2013)应用t_Xphl地质温度计算Kahang和Dalli斑岩矿床 中热液黑云母形成温度(图3)。
图 3黑云母的t_Xphl图解(据Beane, 1974; Ayati et al., 2008; Afs hooni et al., 2013修改) Galore Creek、Santa Rita、Safford、Ray和Hanover斑岩铜矿床黑云母数据引自Bean, 197 4;Panguna、Bingham、Dalli、Kahang斑岩铜矿床黑云母数据引自Ford, 1978; Lanier et al., 1978;Ayati et al., 2008; Afshooni et al., 2013 Fig. 3Compositions of biotite on t_Xphl diagram (modified after Beane, 1974; Ayati et al., 2008; Afshooni et al., 2013) Galore Creek, Santa Rita, Safford, Ray, and Hanover porphyry copper deposits are from Beane, 1974; Panguna, Bingham, Dalli and Kahang porphyry copper deposit ar e from Ford, 1978; Lanier et al., 1978; Ayati et al., 2008; Afshooni et al., 2013 |
许多学者利用黑云母全铝压力计估算岩体的结晶压力和形成深度,进而探讨岩体的形成条件 及成矿的潜力。郭耀宇等(2015)利用黑云母全铝压力计估算西秦岭格尔括合花岗闪长斑岩 的结晶压力为131~181 MPa,相应的侵位深度为5.0~7.1 km。唐傲等(2015)利用黑云 母全铝压力计估算赣中紫云山岩体含矿花岗岩结晶压力为253~322 MPa,对应的侵位深度为 9.56~12.18 km。许腾等(2015)利用黑云母全铝压力计估算河南栾川矿集区燕山期2类 岩体的结晶压力,得出南泥湖和上房沟岩体结晶压力为38~115 MPa,结晶深度为1.4~4. 4 km。武宗 林 等(2015)利用黑云母全铝压力计估算栾川矿集区黄背岭_中鱼库花岗岩结晶压力,得出从 岩体浅部到深部,黄背岭岩体结晶压力为93~14 MPa,结晶深度为3.4~0.5 km;中鱼库 岩体结晶压力为145~58 MPa,结晶深度为5.3~2.1 km。两个岩体浅部结晶压力大,深部 结晶压力 小,表明两者均为快速侵入。陈慧军等(2015)利用黑云母全铝压力计估算滇西古永地区花 岗岩结晶压力为67~120 MPa,结晶深度为2.54~4.55 km;表明本区花岗岩形成于相对较 浅的 环境,相对于古永花岗岩体,小龙河花岗岩体具有更大的锡成矿潜力。东前等(2011)利用 黑云母全铝压力计估算江西武山花岗闪长斑岩结晶压力为86~103 MPa,对应的侵位深度为2 .84~3.39 km,表明该岩体形成于相对较浅环境,具有较大成矿潜力,有利于武山矽卡岩 铜矿的形成。
该氧逸度计被广泛应用于花岗岩和斑岩矿床中。Zhang等(2016)利用黑云母氧逸度计研究S isson Brook W_Mo_Cu矿床周围的长英质侵入岩体,黑云母花岗质岩脉具有高氧逸度(NNO) ,而其他岩体氧逸度较低(QFM),认为仅考虑岩浆的演化程度和氧逸度,黑云母花岗质岩 脉最有可能是成矿流体的来源。Parsapoor等(2015)利用黑云母氧逸度计研究Darreh_Zar 斑岩铜矿床岩浆_热液演化过程的氧逸度,岩浆阶段氧逸度缓冲剂为NNO,热液阶段氧逸度缓 冲剂从NNO升高到HM,再降低到FQM。唐攀等(2016)利用黑云母氧逸度计研究甲玛斑岩铜多 金属矿床岩浆_热液演化过程,得出岩浆向热液氧化过程中,氧逸度增高,即岩浆氧逸度缓 冲剂为NNO,热液阶段氧逸度缓冲剂为HM,并认为高氧逸度有利于斑岩矿床的形成。刘彬等 (2010)利用黑云母氧逸度计研究鄂东南铜山口斑岩铜(钼)矿床,得出成矿岩体花岗闪长 斑岩的氧逸度缓冲剂为NNO。武宗林等(2015)利用黑云母氧逸度计估算栾川矿集区黄背岭_ 中鱼库花岗岩氧逸度分别为10-11.8~10-10和10-13.08~10-10.4 (均为NNO),认为高氧逸度有利于斑岩型钼钨多金属成矿。许腾等(2015)利用黑云母 氧逸度计估算河南栾川矿集区成矿的南泥湖、上房沟岩体氧逸度为10-11.3~ 10- 10,不成矿的老君山岩体氧逸度较低,为10-12.4~10-11.5,认为高氧逸度 是岩体形成斑岩_矽卡岩型矿床的原因之一。
李鸿莉等(2007a)利用黑云母氧逸度计研究芙蓉锡矿田骑田岭花岗岩,角闪石黑云母花岗 岩的氧逸度为10-16.00~10-15.31,与成矿流体有关的黑云母花岗岩的氧逸度 为10-19.20~10-17.50,认为低氧逸度花岗岩有利于锡成矿。李鸿莉等(2007 b)利用黑云母氧逸度计研究岩背火山_斑岩型锡矿含黄玉黑云母花岗岩和含黄玉花岗斑岩, 前者氧逸度较高,为10-15.5~10-15.7,后者氧逸度较低,为10-19.2 ~10-18.7,与锡成矿关系更密切。
章健等(2011)利用黑云母氧逸度计研究产铀和非产铀花岗岩,产铀花岗岩的氧逸度较低( 10-16.5~10-15.0),非产铀花岗岩氧逸度较高(10-12.4~10-12. 5)。陈佑纬等(2010)利用黑云母氧逸度计研究贵东岩体,不产铀的鲁溪岩体氧逸度较高 (10-12~10-11.5),而下庄岩体氧逸度较低(10-14.5~10-15.5 )。陈佑纬等(2013)利用黑云母 氧逸度计研究陕南光石沟伟晶岩型铀矿床,与不产铀伟晶岩相比,产铀伟晶岩更靠近NNO缓 冲线,氧逸度更低。
黑云母普遍存在于所有类型的花岗岩和花岗岩类中,由于这两种岩类的结晶结构的特殊性, 在花岗 质岩浆中黑云母能调整它们大多所共有的元素(Shabani et al., 2003)。黑云母能探究岩 浆成分,主要因其具有以下特征: ① 对不含或含有少量的石榴子石、堇青石或Al2SiO 5同质多形体的花岗岩类,黑云母是最重要的过量铝的储存器,因此,黑云母可以直接反应 母岩岩浆铝饱和度; ② 黑云母是最快速有效的氧化态指示剂(Shabani et al., 2003)。 黑云母是主要的过铝质矿物,黑云母的铝饱和指数与母岩岩体的铝饱和指数 呈正相关关系(De Albuquerque, 1973; Speer, 1981; Lalonde a et al., 1993)。
A型花岗岩黑云母富Fe,I型花岗岩富Mg,S型花岗岩则明显富Al(Abdel_Rahman, 1994; Sha bani et al., 2003)。黑云母的氧化系数和镁质率Mg#也可作为划分I型与S型花岗岩的 依 据,前者中的黑云母具有较高的氧化系数(0.252~0.121)及较高的Mg#(0.384~0 .626),而后者的则较低(徐克勤等,1986)。Dahlquist等(2010)的Fe/(Fe+Mg)_F图解 (图4)区分A型、钙碱性I和S型花岗岩。Jiang等(2002)的AlⅣ_Fe2+/(Fe 2++Mg)图解(图5)区分A型、I型花岗岩和钾玄质花岗岩。
De Albuquerque(1973)研究表明,MgO_FeOtot_Al2O3图解可以区分黑云母是否 与角闪石共 生,与其他铁镁矿物共生,与白云母共生,以及与其他铝硅酸盐矿物共生(硅线石或红柱石 )。 Nachit等(1985)的Al_Mg图解将母岩岩浆分为4类:过铝质、钙碱性、亚碱性、碱性_ 过碱性。 Abdel_Rahman(1994)通过对不同构造环境下岩浆岩中325件黑云母成分研究表 明,黑云母MgO_FeOtot_Al2O3图解可以判别母岩岩浆的性质(过铝质、钙碱性、碱性和碱性 _过碱性)。Sallet(2000)通过系统整理花岗岩类的Ⅳ(F)(F表示在黑云母中的相对富 集程度)得出,钙 碱性花岗岩类的黑云母具有较高的Ⅳ(F)(1.1~2.8,平均值2.19),高K钙碱性花岗岩 类的黑云母具有中等Ⅳ(F)(0.75~1.7,均值1.42),高Si碱性花岗岩类的 黑云母具有较低的Ⅳ(F)(-0.8~1.9,均值0.56),过铝质花岗岩类的黑云 母具有变化较大的Ⅳ(F)(0.2~2.3,均值1.5)。
图 4黑云母Fe/(Fe+Mg)_F图解(据Dahlquist et al., 2010) Fig. 4Compositions of biotite on Fe/(Fe+Mg)_F diagram (after Dahlquist et al ., 2010) |
图 5黑云母AlⅣ_Fe2+/(Fe2++Mg) 图解(据Jiang et al., 2002) Fig. 5Compositions of biotite on AlⅣ_Fe2+/(Fe2++Mg) diagr am (after Jiang et al., 2002) |
周作侠(1986)通过收集全球15个地区和岩体中黑云母的资料,用黑云母w(∑FeO) /w(∑FeO+MgO)_w(MgO)图解判别花岗岩物质来源:壳源、壳幔混源和幔源 。Ague等(1988)研究指出,log(XF/XOH)_log(XMg/X Fe)图解区分I型花岗岩类混染程度(混染程度广义上讲是指从上地幔、深地壳或者俯冲 板片演化形成的铁镁质I型岩浆与大陆地壳来源成分相互作用): I_WC型指弱混染的I型花 岗岩类,I_MC型指中等混染的I型花岗岩类,ISC型指强烈混染的I型花岗岩类,I_SCR型指强 烈混染的还原性I型花岗岩类。
胡建等(2006)研究广东龙窝和白石冈岩体黑云母得出,黑云母的成分特征可作为岩浆分异 演化程度的良好示踪剂,随着岩浆分异演化程度的增高,黑云母的Rb含量依次增高,而Ba含 量则渐次降低,Rb/Ba比值显著增大(图6)。Smith等(2011)利 用黑云母矿物化学成分 研究印尼苏门答腊岛多巴火山碎屑,形成时代较早的多巴火山凝灰岩中的黑云母具有较低的 FeO/MgO比值(2.1~2.6),形成时代较晚的多巴火山凝灰岩中的黑云母具有较高的FeO/M gO比值(2.8~3.7)。
黑云母成分对岩体成因和岩浆构造背景是一种非常好的指示剂,但是仍然需要结合其他资料 ,比如母岩岩体主、微量元素、同位素、区域和其他地质资料(Abdel_Rahman, 1994; Shabani et al., 2003;胡建等,2006)。
图 6黑云母Rb_Ba图解(据胡建等,2006) ★—蛇绿杂岩体闪长岩中镁质黑云母(Bea et al., 1994); Ⅰ—据西藏羌塘北部安山岩 中 黑云母圈定(赖绍聪等,2002); Ⅱ、Ⅲ—分别据葡萄牙中部Viseu地区斑状黑云母花岗 岩和二云母花岗岩圈 定(Neves, 1997) Fig. 6Compositions of biotite on Ba_Rb diagram (after Hu et al., 2006) ★—Mg_biotite in diorite of ophiolite complex rock mass (Bea et al., 1994); I —Delineated according to biotites in andesite in the north of Qiangtang, Tibet (Nai et al., 2002 ); Ⅱ,Ⅲ—Delineated according to biotites in porphyritic b iotite granite and two_mica granite in Viseu area in Central Portuguese , respectively (after Neves, 1997) |
Munoz(1984)用黑云母的F和Cl截距值表示其在黑云母中的相对富集程度,即Ⅳ(F)、Ⅳ( Cl)和Ⅳ(F/Cl),Ⅳ(F)、Ⅳ(Cl)和Ⅳ(F/Cl)由黑云母Xphl、X sid和Xann计算获得,计算公式如下:
其中,XMg=Mg/(八面体阳离子总数);Xsid是黑云母中的铁叶云母摩 尔分数;Xann是黑云母中的铁云母摩尔分数,其计算公式如下(Yavuz, 2003a; 2003b):
Ⅳ(F)值越小表示黑云母中F富集程度越高;Ⅳ(Cl)基本上都为负值, 负得越多表明黑云母中Cl富集程度越高(Munoz, 1984)。Ⅳ(F/Cl)不受平衡体 系温度和黑云母中OH的含量控制,因此直接与f(HCl)/f(HF)逸度比值有关(Mu noz, 1984)。Parsapoor等(2015)通过整理斑岩铜矿床、Sn_W_Be矿床和斑岩钼矿床黑云母的 Ⅳ(F)、Ⅳ(Cl)和Ⅳ(F/Cl),发现斑岩铜矿床 形成于富Cl的岩浆系统,斑岩钼矿床形成于富F的岩浆系统(图7)。Miduk、 Sarcheshmeh、 Dalli、Darreh_Zar、Kahang斑岩铜矿床的黑云母均位于Ⅳ(F/Cl)_Ⅳ(F)图解(图8)的斑岩 铜矿区域。与斑岩铜矿床有关的侵入体中的黑云母具有富Mg特征(Moore et al., 1973; Selby et al., 2000),与斑岩铜矿床有关的黑云母普遍没有显著的富Cl标志(Ayati et al., 2008; Boomeri et al., 2009; 2010; Afshooni et al., 2013; Parsapoor et al., 2 015),这是因为黑云母富镁(Mg_Cl在黑云母中占位回避原则),以及Cl-离子半径(1. 81?)比F-或OH-大,Cl替换OH比F少(Munoz, 1984)。因此,即便镁质云母或金云 母中Cl的含量极少,也需要富Cl的熔体或热液流体才能形成。
图 7斑岩铜矿床、斑岩钼矿床和Sn_W_Be矿床的Ⅳ(F)、Ⅳ(Cl)和 Ⅳ(F/Cl)对比图(据Parsapoor et al., 2015;对比 数据引自Munoz, 1 984) Fig. 7Comparison of Ⅳ(F), Ⅳ(Cl) and Ⅳ(F/Cl) i n Sn_W_Be, Mo and Cu porphyries (after Parsapoor et al., 2015; The comp ared data are from Munoz, 1984) |
图 8黑云母的Ⅳ(F/Cl)_Ⅳ(F)图解 (据Munoz, 1984; Boomeri et al., 2009修改) Miduk、Sarcheshmeh、Dalli、Darreh_Zar、Kahang斑岩铜矿床黑云母 数据分别引 自Boomeri et al., 2009; 2010; Ayati et al., 2008; Parsapoor et al., 2015; Afshoon i et al., 2013 Fig. 8Compositions of biotite on Ⅳ(F/Cl)_Ⅳ(F) diagram (modified after Munoz, 1984;Boomeri et al., 2009) Miduk, Sarcheshmeh, Dalli, Darreh_Zar, Kahang porphyry copper deposits are from Boomeri et al., 2009; 2010; Ayati et al., 2008; Parsapoor et al., 2015; Afshooni et al., 2013 |
式中,T为卤素交换的绝对温度,Xphl为Mg/八面体阳离子总数,XF、 XCl和XOH为黑云母羟基位置的F、Cl和OH的摩尔分数。
Selby等(2000)根据前人资料重新计算Bingham斑岩Cu_Mo_Au矿床(分析数据来自Bowman e t al., 1987; Lanier et al., 1978; Parry et al., 1978)、Santa Rita斑岩Cu矿床(分 析数据来自Jacobs et al., 1979)、Los Pelambres和Bakircay斑岩Cu_Mo矿床(分析数据 来自Taylor, 1983)、Hanover斑岩Cu_Au矿床(分析数据来自Jacobs et al., 1979)中黑 云母的卤素逸度比值,并投于log(f(HF)/f(HCl))_log(f(H2O) /f(HCl))和log(f(H2O)/f(HF))_log(f(H2O)/ f(HCl))图解(图9)中,与Casino斑岩Cu _Au_Mo矿床进行对比。Boomeri等(2009)、Boomeri等(2010)、Ayati等(2008) 、Parsapoor等(2015)、Afshooni等(2013)将Miduk、Sarcheshmeh、Dalli、Darreh_Zar 、Kahang斑岩铜矿床的卤素逸度比均投于Selby等(2000)的log(f(HF)/f(H Cl))_log(f(H2O)/f(HCl))和log(f(H2O)/f(HF)) _log(f(H2O)/f(HCl))图解(图9)进行对比分析。从图9可以看出,与 斑岩钼矿床有关的流体较斑岩铜矿床 具有较高的F/Cl比值;Dalli、Sarcheshmeh、Kahang、Casino斑岩矿床的绢英岩化带的黑云 母都比钾化带具有更高log(f(H2O)/f(HF))和log(f(H2O)/ f(HCl)),可能是由于绢英化带受大气水混合造成的;具有高的log(f(H2O) /f(HF))和log(f(H2O)/f(HCl))可能受后期(?)大气水对 黑云母中可交换位置(OH、F、Cl)的影响(Selby et al., 2000; Boomeri et al., 2010; Afshooni et al., 2013)。
图 9斑岩矿床黑云母log(f(HF)/f(HCl))_log(f(H2O)/f(HCl))(a)和l og(f(H2O)/f(HF))_log(f(H2O)/f(HCl)) (b)对 比图(据Selby et al., 2000; Boomeri et al., 2009; 2010; Ayati et al., 2008; Parsap oor et al., 2015; Afshooni et al., 2013修改) Fig. 9Comparison of the porphyry systems in terms of (a) log(f(HF)/f(H Cl))_log(f(H2O)/f(HCl)) and (b) log(f(H2O)/f(HF))_log(f(H2 O)/f(HCl)) ratios (modified after Selby et al., 2000; Boomeri et al., 2009; 2010; Ayati et al., 2008; Parsapoor et al., 2015; Afshoo ni et al., 2013) |
陈佑纬等(2010)利用黑云母矿物化学研究贵东岩体表明,相比鲁溪岩体,下庄岩体F含量 增高,温度和氧逸度降低,使铀在花岗岩中的丰度升高,有利于晶质铀矿形式存在,使其有 大量铀矿床产出。章健等(2011)利用黑云母矿物化学研究华南印支期产铀和非产铀花岗岩 表明,与非产铀花岗岩相比,产铀花岗岩具有如下特征:黑云母蚀变程度强,包裹的副矿物 较多;黑云母中SiO2、TiO2、Fe2O3、MgO含量较低,Al2O3、F、FeO含量 较高;黑云母均为铁叶云母,ⅥAl3+、Fe2+高;并且花岗岩的 氧逸 度低、成岩温度低。这些特征是判别华南印支期花岗岩产铀潜力的重要标志。陈佑纬等(20 13)利用黑云母矿物化学研究陕南光石 沟伟晶岩型铀矿床表明,产铀黑云母伟晶岩中黑云母相对于非产铀黑云母伟晶岩具有富Mg、 Mn,贫Al、ACNK、低氧逸度的特征。唐傲等(2015)利用黑云母矿物化学研究赣中紫云山岩 体含矿 花岗岩表明,紫云山花岗岩形成于相对较高的温度和氧逸度环境,属于壳源的S型花岗岩, 岩体中黑云母具有富F的特征,为铀、钨矿的形成提供了有利条件。
Warren等(2015)研究Sudbury杂岩中Ni_Cu_PGE矿床表明,黑云母的Ni_Cr_Cu含量可以作为 与基性_超基性有关的Ni_Cu_PGE矿床的找矿指示,相比于成矿后的区域变质形成的黑云 母和远离矿化岩体的并且具有异常Cu含量的围岩中的黑云母,矿化的岩体黑云母具有显著高 的Ni和Ni/Cr。王葳平等(2012)和唐攀等(2016)分别利用激光等离子质谱仪和电子探针 研究甲玛斑岩成矿系统黑云母中铜含量,发现热液黑云母中的铜含量较角岩中的原生黑云母 和岩浆黑云母高,热液黑云母铜含量对斑岩成矿具有重要的指示作用。
(1) 黑云母是岩浆岩中重要的铁镁质成岩硅酸盐矿物,既可以形成于侵入体结晶过程,也 可以形成于岩浆热液过程。通过细致的岩相学观察,再加上精确的原位微区分析,黑云母化 学成分对花岗岩类的岩石成因和构造背景的指示以及评价斑岩矿床岩浆热液演化过程和岩体 的成矿潜力是有用且可靠的。这是开展黑云母矿物化学研究的基础。
(2) 黑云母矿物化学可以快速地指示区域中酸性岩浆岩的性质和构造背景,黑云母的氧逸 度、卤素和含铜性等可以作为评价区域上中酸性岩体是否具有斑岩或岩浆热液成矿的潜力的 一个重要指标。可以预料,黑云母矿物化学应用于区域岩体面扫和黑云母矿物化学填图是其 未来研究的发展趋势。
(3) 黑云母矿物化学研究能为斑岩型铜多金属矿床或岩浆热液矿床的成矿预测和勘查评价 提供最新的找矿矿物学证据。
志谢感谢审稿专家对本文提出的宝贵修改意见。
Abrecht J and Hewitt D A. 1988. Experimental evidence on the substitution of Ti in biotite[J]. American Mineralogist, 73:1275_1284.
Afshooni S Z, Mirnejad H, Esmaeily D and Haroni H A. 2013. Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Centr al Province of Iran[J]. Ore Geology Reviews, 54: 214_232.
Ague J J and Brimhall G H. 1988. Regional variations in bulk chemistry, mineralo gy, and the compositions of mafic and accessory minerals in the batholit
HS of Ca lifornia[J]. Geological Society of America Bulletin, 100(100): 891_911.
Al_Hashimi A R K and Brownlow A H. 1970. Copper content of biotites from the Bou lder Batholith, Montana[J]. Econ. Geol., 65(8): 985_992.
Ayati F, Yavuz F, Noghreyan M, Haroni H A and Yavuz R. 2008. Chemical characteri stics and composition of hydrothermal biotite from the Dalli porphyry copper pro spect, Arak, Central Province of Iran[J]. Mineralogy and Petrology, 94(1_2): 1 07_122.
Barrière M and Cotten J. 1979. Biotites and associated minerals as markers of m agmatic fractionation and deuteric equilibration in granites[J]. Contribut ions to Mineralogy and Petrology, 70(2): 183_192.
Bea F, Yereira M D and Stroh A. 1994. Mineral/leucosome trace_element portioning in a peraluminous migmatite(a laser ablation_ICP_MS study[J]. Chemical Geolog y, 117: 291_312.
Beane R E. 1974. Biotite stability in the porphyry copper environment[J]. Econ. Geol., 69(2): 241_256.
Boomeri M, Nakashima K and Lentz D R. 2009. The Miduk porphyry Cu deposit, Kerma n, Iran: A geochemical analysis of the potassic zone including halogen element s ystematics related to Cu mineralization processes[J]. Journal of Geochemical E xploration, 103(1): 17_29.
Boomeri M, Nakashima K and Lentz D R. 2010. The Sarcheshmeh porphyry copper depo sit, Kerman, Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematics related to Cu mineralization process es[J]. Ore Geology Reviews, 38(4): 367_381.
Bowman J R, Parry W T, Kropp W P and Kruer S A. 1987. Chemical and isotopic evol ution of hydrothermal solutions at Bingham, Utah[J]. Econ. Geol., 82: 395_ 428.
Burkhard D J M. 1993. Biotite crystallization temperatures and redox states in g ranitic rocks as indicator for tectonic setting[J]. Geologie_en Mijnbouw, 71(4 ): 337_349.
Chen H J, Zhang S T, Cao H W, Wang X F, Nie X L, Zhang W and Tang L. 2015. Compo sitional characteristics, petrogenesis and metallogenic significance of biotite from granite in the Guyong region of western Yunnan Province, China[J]. Acta M ineralogica Sinica, 2015, (2):267_275(in Chinese with EnglishAbstract).
Chen Y W, Bi X W, Hu R Z, Zhu W G, Xu L L and Dong S H. 2010. The geochemical ch aracteristics of biotites and their constraints on uranium mineralization in Gui dong pluton[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 29(4): 355 _363(in Chinese with EnglishAbstract).
Chen Y W, Bi X W, Hu R Z, Dong S H, Cheng D J and Feng Z S. 2013. Mineral chemis try of biotite and its implications for uranium mineralization in Guangshigou pe gmatite_type uranium deposit, south Shanxi Province[J]. J. Mineral Petrol, 33 (4): 17_28(in Chinese with EnglishAbstract).
Chivas A R. 1981. Geochemical evidence for magmatic fluids in porphyry copper mi neralization. Part I. mafic silicates from the Koloula igneous complex[J]. Con tributions to Mineralogy and Petrology, 78(4): 389_403.
Czamanske G K and Wones D R. 1973. Oxidation during magmatic differentiation, Fi nnmarka complex, Oslo Area, Norway: Part 2, the mafic silicates1[J]. Journal o f Petrology, 14: 349_380.
Czamanske G K, Ishihara S and Atkin S A. 1981. Chemistry of rock forming minera ls of the Cretaceous Paleocene batholith in southwestern Japan and implications for magma genesis[J]. Journal of Geophysical Research: Solid Earth, 86(11): 1 0431_10469.
Dahlquist J A, Alasino P H, Eby G N, Galindo C and Casquet C. 2010. Fault contro lled carboniferous A_type magmatism in the proto_Andean foreland (Sierras Pampea nas, Argentina): Geochemical constraints and petrogenesis[J]. Lithos, 115(1): 65_81.
De Albuquerque C A. 1973. Geochemistry of biotites from granitic rocks, northern Portugal[J]. Geochimica et Cosmochimica Acta, 37(7): 1779_1802.
Dodge F, Smith V C and Mays R E. 1969. Biotites from granitic rocks of the Centr al Sierra Nevada batholith, California[J]. Journal of Petrology, 10(2): 250_27 1.
Dong Q, Du Y S, Cao Y, Pang Z S, Song L X and Zheng Z. 2011. Compositional chara cteristics of biotites in Wushan granodiorite, Jiangxi Province: Implications fo r petrogenesis and mineralization[J]. J. Mineral Petrol., 31(2): 1_6(in Ch inese with EnglishAbstract).
Dymek R F. 1983. Titanium, aluminum and interlayer cation substitutions in bioti te from high_grade gneisses, West Greenland[J]. American Mineralogist, 68 (9_1 0): 880_899.
Finch A A, Parsons I and Mingard S C. 1995. Biotite as indicators of fluorine fu gacities in late_stage magmatic fluids: The Gardar province of South Greenland[ J]. Journal of Petrology, 36(6): 1701_1728.
Ford J H. 1978. A chemical study of alteration at the Panguna porphyry copper de posit, Bougainville, Papua New Guinea[J]. Econ.Geol., 73:703_720.
Fu J B. 1981. Chemical composition of biotite in porphyry copper deposits[J ]. Geology and Prospecting, (9): 16_19(in Chinese).
Grabezkev A I, Vigorova V G and Chashukhina V A. 1979. Behavior of fluorine duri ng crystallization of granites (in connection with validation of the criteria of granite specialization)[J]. Geochemistry International, 16: 23_33.
Guo Y Y, He W Y, Li Z C, Ji X Z, Han Y, Fang W K and Yin C. 2015. Petrogenesis o f Geerkuohe porphyry granitoid, western Qinling: Constraints from mineral chemi cal characteristics of biotites[J]. Acta Petrologica Sinica, 31(11): 3380_ 3390(in Chinese with EnglishAbstract).
Hendry D, Chivas A R, Reed S and Long J. 1981. Geochemical evidence for magmatic fluids in porphyry copper mineralization. Part Ⅱ. Ion_probe analysis of Cu con tents of mafic minerals, Koloula igneous complex[J]. Contributions to Mineralo gy and Petrology, 78(4): 404_412.
Hendry D, Chivas A R, Long J and Reed S. 1985. Chemical differences between mine rals from mineralizing and barren intrusions from some North American porphyry c opper deposits[J]. Contributions to Mineralogy and Petrology, 89(4): 317_329.
Henry D J. 2005. The Ti_saturation surface for low_to_medium pressure metapeliti c biotites: Implications for geothermometry and Ti_substitution mechanisms[J]. American Mineralogist, 90(2_3): 316_328.
Hong D W. 1982. Biotites and mineralogical facies from granitic rocks of South C hina and their relation to the series of mineralization[J]. Acta Geologica Sin ica, (2): 149_164(in Chinese with EnglishAbstract).
Hu J, Qiu J S, Wang R C, Jiang S Y, Zing H F and Wang X L. 2006. Zircon U_Pb geo chronology, biotite mineral chemistry and their petrogenetic implications of the Longwo and Baishigang plutons in Guangdong Province[J]. Acta Petrologica Sirc ica, 22(10):2464_2474(in Chinese with EnglishAbstract).
Ilton E S and Veblen D R. 1988. Copper inclusions in sheet silicates from porphy ry Cu deposits[J]. Nature, 334(6182): 516_518.
Ilton E S and Veblen D R. 1993. Origin and mode of copper enrichment in biotite from rocks associated with porphyry copper deposits: A transmission electron mic roscopy investigation[J]. Econ. Geol., 88(4): 885_900.
Jacobs D C and Parry W T. 1976. A comparison of the geochemistry of biotite from some basin and range stocks[J]. Econ. Geol., 71(6): 1029_1035.
Jacobs D C and Parry W T. 1979. Geochemistry of biotite in the Santa Rita porphy ry copper deposit, New Mexico[J]. Econ. Geol., 74(4): 860_887.
Jiang Y, Jiang S, Ling H, Zhou X, Rui X and Yang W. 2002. Petrology and geochemi stry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, nor thwestern China: Implications for granitoid geneses[J]. Lithos, 63(3): 165 _187.
Karimpour M H, Stern C R and Mouradi M. 2011. Chemical composition of biotite as a guide to petrogenesis of granitic rocks from Maherabad, Dehnow, Gheshlagh, Kh ajehmourad and Najmabad, Iran[J]. Iranian Society of Crystallography and M ineralogy, 18: 89_100.
Lai S C, Yi H S and OReilly S Y. 2002. Geochemistry of biotite of the Cenozoic volcabic rock series from north Qiangtang, Tibetan plateau and its petrological implications[J]. Progress in Natural Science, 12(3): 311_314(in Chinese).
Lalonde A. 1993. Composition and color of biotite from granites two useful prope rties in the characterization of plutonic suites from the Hepburn internal zone of Wopmay Orogen, northwest[J]. Canadian Mineralogist, 31: 203_217.
Lanier G, Raab W J, Folsom R B and Cone S. 1978. Alteration of equigranular monzonite, Bingham mining district, Utah[J]. Econ. Geol., 73(7): 1270_1286.
Li H L, Bi X W, Hu R Z, Peng J T, Shuang Y, Li Z L, Li X M and Yuan S D. 2007a. Mineral chemistry of biotite in the Qitianling granite associated with the Furon g tin deposit: Tracing tin mineralization signatures[J]. Acta Petrologica Sinica, 23(10): 2605_2614(in Chinese with EnglishAbstract).
Li H L, Bi X W, Tu G C, Hu R Z, Pen J T and Wu K X. 2007b. Mineral chemistry of biotite from yanber pluton: Implication for Sn_metallogeny[J]. J. Mineral Petr ol., 27(3): 49_54(in Chinese with EnglishAbstract).
Lin W W and Peng L J. 1994. The estimation of Fe3+ and Fe2+ contents in amphibol e and biotite from EMPA data[J]. Journal of Changchun University of Earth Scie nces, 24(2): 155_162(in Chinese with EnglishAbstract).
Liu B, Ma C Q, Liu Y Y and Xiong F H. 2010. Mineral chemistry of biotites from t he Tongshankou Cu_Mo deposit: Implications for petrogenesis and mineralization[ J ]. Acta Petrologica et Mineralogica, 29(2): 151_165(in Chinese with English abs tract).
Liu L J and Wang J C. 1984. The formative mechanism of biotitization_biotite_rec rystallization in granitoid and its geological significance[J]. Geoteconic a et Metallogenia, 8(4): 369_375(in Chinese with EnglishAbstract).
Loferski P J and Ayuso R A. 1995. Petrography and mineral chemistry of the compo site Deboullie pluton, northern Maine, USA: Implications for the genesis of Cu_M o mineralization[J]. Chemical Geology, 123(1): 89_105.
Lou Y E and Du Y S. 2006. Characteristics and genesis of biotites from the Mesoz oic intrusive rocks in the Fanchang_Tongling area, Anhui Province[J]. Acta Min eralogica Sincia, 26(2): 175_180 (in Chinese with EnglishAbstract).
Mi J R, Yuan S D, Yuan Y B and Xuan Y S. 2014. Mineral chemistry of biotites in Baoshan granodiorite_porphyry,southern Hunan Province: Implications for petroge nesis and mineralization[J]. Mineral Deposits, 33(6): 1357_1365(in Chinese with EnglishAbstract).
Moore W J and Czamanske G K. 1973. Compositions of biotites from unaltered and a ltered monzonitic rocks in the Bingham Mining District, Utah[J]. Econ. Geol., 68(2): 269_274.
Munoz J L. 1984. F_OH and Cl_OH exchange in micas with applications to hydrother mal ore deposits[J]. Reviews in Mineralogy and Geochemistry, 13(1): 469_493.
Munoz J L. 1992. Calculation of HF and HCl fugacities from biotite compositions: Revised equations[J]. Geological Society of America,Abstracts with Programs, 24: A221.
Nachit H, Razafimahefa N, Stussi J M and Carron J P. 1985. Composition chimique des biotites et typologie magmatique des granitoides[J]. Comtes Rendus Heb domadaires de I Académie des sciences, 301 (11): 813_818.
Nachit H, Ibhi A, Abia E H and Ben O M. 2005. Discrimination between primary mag matic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Ren dus Geoscience, 337(16): 1415_1420.
Neiva A R. 1981. Geochemistry of hybrid granitoid rocks and of their biotites fr om central northern Portugal and their petrogenesis[J]. Lithos, 14(2): 149_163 .
Neves L J P F. 1997. Trace element content and partitioning between biotite and muscovite of granitic rocks: A study in the Viseu region (Central Portugal)[J] . European Journal of Mineralogy, 9: 849_857.
Niu X L, Yang J S, Feng G Y and Liu F. 2015. Mineral chemistry of biotites from the Fanshan ultramafic_syenitic complex from the Fanshan and its petrogenetic si gnificance[J]. Acta Geologica Sinica, 89(6): 1108_1119(in Chinese with EnglishAbstract).
Parry W T, Ballantyne G H and Wilson J C. 1978. Chemistry of biotite and apatite from a vesicular quartz latite porphyry plug at Bingham, Utah[J]. Econ. Geol. , 73: 1308_1314.
Parsapoor A, Khalili M, Tepley F and Maghami M. 2015. Mineral chemistry and isot opic composition of magmatic, re_equilibrated and hydrothermal biotites from Dar reh_Zar porphyry copper deposit, Kerman (southeast of Iran)[J]. Ore Geology Re views, 66: 200_218.
Patino Douce A E. 1993. Titanium substitution in biotite: An empirical model wit h applications to thermometry, O2 and H2O barometers, and consequence for bi otite stability[J]. Chemical Geology, 108: 132_162.
Qin K Z, Zhang L C, Ding K S, Xu Y X, Tang D M, Xu X W, Ma T L and Li G M. 2009. Mineralization type, petrogenesis of ore_bearing intrusions and mineralogical c haracteristics of Sanchakou copper deposits in eastern Tianshan[J]. Acta Petro logica Sinica, 25(4): 845_861(in Chinese with EnglishAbstract).
Rieder M, Cavazzini G, DYakonov Y S, Frank_Kamenetskii V A, Gottardi G, Guoggen heim S, Koval P V, Muller G, Neiva A M R, Radoslovich E W, Robert J L, Sssi F P, Takeda H, Weiss Z and Wones D R. 1998. Nomenclature of the micas[J]. The Cana dian Mineralogist, 36: 41_48.
Robert J L. 1976. Titanium solubility in synthetic phlogopite solid solutions[J ]. Chemical Geology, 17(3): 213_227.
Sallet R. 2000. Fluorine as a tool in the petrogenesis of quartz_bearing magmati c associations: Applications of an improved F_OH biotite_apatite thermometer grid[J]. Lithos, 50(1_3): 241_253.
Sarjoughian F, Kananian A, Ahmadian J and Murata M. 2015. Chemical composition o f biotite from the Kuh_e Dom pluton, Central Iran: Implication for granitoid mag matism and related Cu_Au mineralization[J]. Arabian Journal of Geosciences, 8( 3): 1521_1533.
Selby D and Nesbitt B E. 2000. Chemical composition of biotite from the Casino p orphyry Cu_Au_Mo mineralization, Yukon, Canada: Evaluation of magmatic and h ydrothermal fluid chemistry[J]. Chemical Geology, 171(1_2): 77_93.
Shabani A A, Lalonde A E and Whalen J B. 2003. Composition of biotite from g rani tic rocks of the Canadian Appalachian orogen: A potential tectonomagmatic indica tor[J]? The Canadian Mineralogist, 41(6): 1381_1396.
Siahcheshm K, Calagari A A, Abedini A and Lentz D R. 2012. Halogen signatures of biotites from the Maher_Abad porphyry copper deposit, Iran: Characterization of volatiles in syn_to post_magmatic hydrothermal fluids[J]. International Geolo gy Review, 54(12): 1353_1368.
Smith V C, Pearce N J,Matthews N E,Westgate J A, PetragliaM D, Haslam M, Lane C S, Korisettar R and Pal J. 2011. Geochemical fingerprinting of the widespread T oba tephra using biotite compositions[J]. Quaternary International, 246 (1_2): 97_104.
Speer J A. 1981. Petrology of cordierite_and almandine_bearing granitoid plutons of the southern Appalachian Piedmont, USA[J]. Canadian Mineralogist, 19: 35_4 6.
Speer J A. 1987. Evolution of magmatic AFM mineral assemblages in granitoid rock s: The hornblende+melt=biotite reaction in the Liberty Hill pluton, South Caroli na[J]. American Mineralogist, 72(9_10): 863_878.
Tang A, Li G L, Zhou L Q and Su Y. 2015. Compositional characteristics of biotit e in Ziyunshan ore bearing granite, Central Jiangxi: Implications for petrogenes is and mineralization[J]. J. Mineral Petrol., 35(1): 29_34.
Tang P, Chen Y C Tang J X, Zheng W B, Leng Q F, Lin B and Fang X. 2016. Typomorp hic characteristics and geological significance of biotites in Jiama porphyry de posit system, Tibet[J]. Mineral Deposits, 35(4): 846_866 (in Chinese with Eng lishAbstract).
Tao J H, Cen T, Long W G and Li W X. 2015. Mineral chemistry of biotites from th e Indosinian weakly peraluminous and strongly peraluminous granites in South Chi na and their constraints petrogenesis[J]. Earth Science Frontiers, 22(2): 64_78(in Chinese with EnglishAbstract).
Taylor R P. 1983. Comparison of biotite geochemistry of Bakircay, Turkey, and Lo s Pelambres, Chile, porphyry copper systems[J]. Institution of Mining and Meta llurgy Transactions, 92:16_22.
Uchida E, Endo S and Makino M. 2007. Relationship between solidification depth o f granitic rocks and formation of hydrothermal ore deposits[J]. Resource Geolo gy, 57(1): 47_56.
Wang W P, Tang J X and Ying L J. 2012. Mineral chemical characteristics of b ioti tes from hornfels in the Jiama(Gyama) polymetallic copper deposit of Tibet and t heir geological significance[J]. Acta Geoscientica Sinica, 33(4): 444_458(in C hinese with EnglishAbstract).
Wang X X and Lu X X. 1998. A study of biotite from the Shahewan Rapakivi granite in Qinling and its significance[J]. Acta Petrologica et Mineralogica, 17(4): 352_358(in Chinese with EnglishAbstract).
Warren M R, Hanley J J, Ames D E and Jackson S E. 2015. The Ni_Cr_Cu content of biotite as pathfinder elements for magmatic sulfide exploration associated with mafic units of the Sudbury igneous complex, Ontario, Canada[J]. Journal of Geo chemical Exploration, 153: 11_29.
Wones D R and Eugster H P. 1965. Stability of biotite_experiment theory and appl ication[J]. American Mineralogist, 50(9): 1228.
Wu Z L,Zhang S T,Xu T, Cao H W, Pei Q M, Deng M Z, Tang C H and Zhang P. 2015. Compositional characteristics, petrogenesis and metallogenic significance of bi otite from granite in the Huangbeiling_Zhongyuku region of Luanchuan ore concent ration area[J]. J. Mineral Petrol., 35(3): 11_19 (in Chinese with EnglishAbstract).
Xiong X L, Shi M Q and Chen F R. 2001. Biotite as a tracer of Cu and Au minerali zation in hypergene_subvolcanic plutons[J]. Mineral Deposits, 21(2): 107_111(i n Chinese with EnglishAbstract).
Xu K Q and Tu G C. 1986. Relationship between granitic rocks and mineralization [M]. Nanjing: Science and Technology of Jiangsu Press. 1_645(in Chinese).
Xu T, Zhang S T, Yang B, Cao H W, Zhang Y H, Pei Q M, Zhang P, Tang C H and Wu Z L. 2015. Characteristics of biotites in teo types of Yanshanian granitic pluton in Luanchuan ore concentration area of China and its significance[J]. Journal o f Chengdu University of Technology(Science & Technology Edition), 42(3): 257_267 (in Chinese with EnglishAbstract).
Yang M Z. 1964. The alteration of hydrothermal biotite in disseminated molybdenu m deposits, eastern China[J]. Acta Geologica Sinica, 44(2): 191_212(in Chinese with EnglishAbstract).
Yavuz F. 2003a. Evaluating micas in petrologic and metallogenic aspect: Part Ⅱ_ Applications using the computer program Mica+[J]. Computers & Geosciences, 29( 10): 1215_1228.
Yavuz F. 2003b. Evaluating micas in petrologic and metallogenic aspect: I_defin i tions and structure of the computer program MICA+[J]. Computers & Geosciences, 29(10): 1203_1213.
Zhang J, Chen W F and Chen P R. 2011. Compositional differences of the biotites from the uranium_forming and non uranium_forming Indosinian granites in South Ch ina[J]. Geotectonica et Metallogenia, 35(2): 270_277(in Chinese with English a bstract).
Zhang P P and Zhu Z X. 1991. The mineralogical characteristics of biotites i n gr anite and its genetic significance in central and southern Daxinganling mountain s[J]. Journal of Changchun University of Earth Science, 21(3): 307_312(in Chin ese with EnglishAbstract).
Zhang W, Lentz D R, Thorne K G and McFarlane C. 2016. Geochemical characteristic s of biotite from felsic intrusive rocks around the Sisson Brook W_Mo_Cu deposit , West_Central New Brunswick: An indicator of halogen and oxygen fugacity of mag matic systems[J]. Ore Geology Reviews, 77: 82_96.
Zheng Q R. 1983. Calculation of the Fe3+ and Fe2+ contents in silica te and Ti_Fe oxide minerals from EMPA data[J]. Acta Mineralogica Sinica, 3(1): 55_62(in Chi nese with EnglishAbstract).
Zhou Z X. 1986. The origin of intrusive mass in Fengshandong, Hubei Province[J ]. Acta Petrologica Sinica, 2(1): 59_70 (in Chinese with EnglishAbstract).
Zhu C and Sverjensky D A. 1991. Partitioning of F_Cl_OH between minerals and hyd rothermal fluids[J]. Geochimica et Cosmochimica Acta, 55(7): 1837_1858.
Zhu C and Sverjensky D A. 1992. F_Cl_OH partitioning between biotite and apatite [J]. Geochimica et Cosmochimica Acta, 56(9): 3435_3467.
附中文参考文献
陈慧军, 张寿庭, 曹华文, 王祥发, 聂晓亮, 张伟, 唐利. 2015. 滇西古永地区花 岗岩中黑云母成分特征及其成岩成矿意义[J]. 矿物学报, 2015, (2):267_275.
陈佑纬, 毕献武, 胡瑞忠, 朱维光, 胥磊落, 董少花. 2010. 贵东岩体黑云母成分特征及其 对铀成矿的制约[J]. 矿物岩石地球化学通报, 29(4): 355_363.
陈佑纬, 毕献武, 胡瑞忠, 董少花, 程德进, 冯张生. 2013. 陕南光石沟伟晶岩型铀矿床黑 云母矿物化学研究及其对铀成矿的启示[J]. 矿物岩石, 33(4): 17_28.
东前, 杜杨松, 曹毅, 庞振山, 宋林旭, 郑震. 2011. 江西武山花岗闪长斑岩中黑云母成分 特征及其成岩成矿意义[J]. 矿物岩石, 31(2): 1_6.
傅金宝. 1981. 斑岩铜矿中黑云母的化学组成特征[J]. 地质与勘探, 9(1): 16_19.
郭耀宇, 和文言, 李在春, 戢兴忠, 韩愉, 房维科, 殷超. 2015. 西秦岭格尔括合花岗闪长 斑岩岩石成因:黑云母矿物学特征约束[J]. 岩石学报, 31(11):3380_3390.
洪大卫. 1982. 华南花岗岩的黑云母和矿物相及其与矿化系列的关系[J]. 地质学报, 2(5 ): 149_164.
胡建, 邱检生, 王汝成, 蒋少涌, 凌洪飞, 王孝磊. 2006. 广东龙窝和白石冈岩体锆石U_Pb 年代学、黑云母矿物化学及其成岩指示意义[J]. 岩石学报, 22(10): 2464_2474.
赖绍聪,伊海生,刘池阳,OReilly S Y. 2002. 青藏高原北羌塘新生代火山岩黑石母地球 化学及其岩石学意义[J]. 自然科学进展, 12 (3): 311_314.
李鸿莉, 毕献武, 胡瑞忠, 彭建堂, 双燕, 李兆丽, 李晓敏, 袁顺达. 2007a. 芙蓉锡矿田 骑田岭花岗岩黑云母矿物化学组成及其对锡成矿的指示意义[J]. 岩石学报, 23(10):2605 _2614.
李鸿莉, 毕献武, 涂光炽, 胡瑞忠, 彭建堂, 吴开兴. 2007b. 岩背花岗岩黑云母矿物化学 研究及其对成矿意义的指示[J]. 矿物岩石, 27(3): 49_54.
林文蔚, 彭丽君. 1994. 由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe 2+[J]. 长春地质学院学报, 24(2): 155_162.
刘彬, 马昌前, 刘园园, 熊富浩. 2010. 鄂东南铜山口铜(钼)矿床黑云母矿物化学特征及 其对岩石成因与成矿的指示[J]. 岩石矿物学杂志,29(2):151_165.
刘立钧, 王均灿. 1984. 花岗岩类中黑云母化_黑云母重结晶作用的形成机理及其地质意义 [J]. 大地构造与成矿学, 8(4): 369_375.
楼亚儿, 杜杨松. 2006. 安徽繁昌_铜陵中生代侵入岩的黑云母特征和成因探讨[J]. 矿物 学报, 26(2): 175_180.
弥佳茹, 袁顺达, 原垭斌, 轩一撒. 2014. 湘南宝山矿床花岗闪长斑岩中黑云母的矿物学特 征及其指示意义[J]. 矿床地质, 33(6): 1357_1365.
牛晓露, 杨经绥, 冯光英, 刘飞. 2015. 河北矾山超镁铁岩_正长岩杂岩体中黑云母的特征 及其成岩指示意义[J]. 地质学报, 89(6): 1108_1119.
秦克章, 张连昌, 丁奎首, 许英霞, 唐冬梅, 徐兴旺, 马天林, 李光明. 2009. 东天山三岔 口铜矿床类型、赋矿岩石成因与矿床矿物学特征[J]. 岩石学报, 25(4):845_861.
唐傲,李光来, 周龙全, 苏晔. 2015. 赣中紫云山岩体含矿花岗岩黑云母成分特征及其成岩 成矿意义[J]. 矿物岩石, 35(1): 29_34.
唐攀, 陈毓川, 唐菊兴, 郑文宝, 冷秋锋, 林彬, 方向. 2016. 西藏甲玛斑岩矿床系统黑云 母特征及其地质意义[J]. 矿床地质, 36(1): 846_866.
陶继华, 岑涛, 龙文国, 李武显. 2015. 华南印支期弱过铝质和强过铝质花岗岩中黑云母的 矿物化学及其岩石成因制约[J]. 地学前缘, 22(2): 64_78.
王崴平, 唐菊兴, 应立娟. 2012. 甲玛铜多金属矿床角岩中黑云母矿物化学特征及其地质意 义[J]. 地球学报, 33(4): 444_458.
王晓霞, 卢欣祥. 1998. 秦岭沙河湾环斑花岗岩中黑云母的研究及其意义[J]. 岩石矿物 学杂志, 17(4): 352_358.
武宗林, 张寿庭, 许腾, 曹华文, 裴秋明, 邓铭哲, 唐灿辉, 张鹏. 2015. 栾川矿集区黄背 岭_中鱼库花岗岩中黑云母成分特征及成岩成矿意义[J]. 矿物岩石, 35(3): 11_19.
熊小林, 石满全, 陈繁荣. 2001. 浅成_次火山岩黑云母Cu,Au成矿示踪意义[J]. 矿床地 质, 21(2): 107_111.
徐克勤, 涂光炽. 1986. 花岗岩地质和成矿关系[M].南京:江苏科学技术出版社. 1_645
许腾, 张寿庭, 杨冰, 曹华文, 张云辉, 裴秋明, 张鹏, 唐灿辉, 武宗林. 2015. 河南栾川 矿集区燕山期两类岩体黑云母特征对比及其地质意义[J]. 成都理工大学学报(自然科学 版), 42(3): 257_267.
杨敏之. 1964. 我国东北甲区钼矿化有关热液蚀变黑云母的物理化学性质及其成因[J]. 地质学报, 44(2): 191_212.
张培萍, 朱钟秀. 1991. 大兴安岭中南段花岗岩中黑云母的矿物学研究及成因意义[J]. 长春地质学院学报, 21(3): 307_312.
章健, 陈卫锋, 陈培荣. 2011. 华南印支期产铀和非产铀花岗岩黑云母矿物化学成分差异[ J]. 大地构造与成矿学, 35(2): 270_277.
郑巧荣. 1983. 由电子探针分析计算Fe3+和Fe2+[J]. 矿物学报, 3(1):55_6 2.
周作侠. 1986. 湖北丰山洞岩体成因探讨[J]. 岩石学报, 2(1): 59_70.