-
中国是农业和人口大国,粮食是立国之本。钾肥是“粮食中的粮食”,在保障国家粮食生产安全中具有重要的作用。目前,中国主要开发利用的钾盐资源为西北内陆盐湖区第四纪浅部富钾卤水。但随着多年规模开采,资源量锐减,寻找后备钾盐资源是当前亟待解决的问题。
罗布泊是全球最大的干盐湖之一,蕴藏着丰富的盐类矿产资源。自1995年发现罗布泊盐湖罗北凹地超大型卤水钾盐矿床以来(王弭力等,1996;1998;2001),后续勘查研究在罗北凹地外围发现多个大中型浅部卤水钾盐矿床(刘成林等,2002;2003a;2003b;2006;2009;2010a;2010b)以及深部发现资源丰富可采的卤水钾盐资源(焦鹏程等,2014;2018;刘成林等,2018;Zhang et al., 2021),为罗布泊钾盐资源生产基地的建设和发展奠定了基础。目前,罗布泊已经成为全球最大的单体硫酸钾生产基地,在维持中国钾肥供给、提高中国在国际钾肥的话语权方面发挥了重要作用。
与卤水钾盐资源相比,罗布泊以及中国其他第四纪盐湖固体钾盐资源受关注较少(Peryt et al., 1998;2005;赵海彤等,2014;Li et al.,2020)。而这些固体钾盐资源埋藏浅、易开采,可作为后备资源,在维持矿山可持续发展、巩固罗布泊钾盐基地地位等方面仍具有重要作用;另一方面,对该区第四纪/现代盐湖固体钾盐成因的研究,对中国其他盐湖甚至古代含盐盆地钾盐找矿具有重要指导意义。笔者对罗布泊盐湖区目前发现的主要固体钾盐资源沉积特征、分布进行梳理,在此基础上对其成因进行探讨,以期为后续找钾工作提供理论借鉴。
1区域地质罗布泊位于中国新疆塔里木盆地东端,是世界上最大的第四纪干盐湖之一。作为塔里木盆地流域的尾闾,罗布泊地区被北部的库鲁克塔格山、东部的北山以及南部阿尔金山所围限,显示出“高山深盆”的地貌特征。构造上,罗布泊晚新生代为拉张背景下的箕状断陷盆地,其形成演化明显受控于阿尔金及库鲁克塔格走滑断裂系统(郭召杰等,1995)。
晚新生代以来罗布泊经历了多期构造活动,对盆地成盐成钾产生了深远影响。一方面,塔里木盆地构造反转,导致盆地东部的罗布泊地区在上新世末期成为最低洼地区,接收塔里木河流域丰富的河流补给,为成盐成钾奠定了物质基础(Liu et al.,2015;吕凤琳等,2015;2018);另一方面,中晚更新世罗布泊地区内部发生构造分异,统一的罗布泊古盐湖分为南部大耳朵湖区和北部罗北凹地等次级盐湖凹地,同时发育一系列北北东向的断陷带(图1),为成盐成钾物质的运移和储集提供了场所(王弭力等,2001;刘成林等,2006)。伴随着罗布泊盆地构造分异,物源补给发生改变,导致盐湖沉积发生化学分异,在干旱气候条件下,区内不同部位发育不同类型的钾盐沉积。
2罗布泊盐湖区主要固体钾盐沉积 概述2.1杂卤石罗布泊盐湖区杂卤石主要分布于罗北凹地。“罗北凹地”一词由王弭力等在发现罗布泊东北部凹地大型卤水钾盐矿床后所命名(王弭力等,1996;2001)。在地貌上,罗北凹地为罗布泊盐湖的次级凹地之一,是第四纪以来沉降最深部位。罗北凹地杂卤石集中发育于蒸发岩序列的中上部,主要以3种形式产出:①以单独的夹层产出于钙芒硝岩(图2a)或者石盐岩层,单层厚度小于2 cm;②以分散状形式与钙芒硝岩共生,形成含杂卤石的钙芒硝岩(图2b)或者含钙芒硝杂卤石岩,该类杂卤石或充填于钙芒硝晶间、或交代钙芒硝产出;③与石盐/白钠镁矾共生,杂卤石或充填于石盐/白钠镁矾晶间,形成含杂卤石的石盐岩/白钠镁矾。微观上,杂卤石晶体常呈板状或者柱状,多以花瓣状集合体形式产出(图3a),部分晶间孔隙中杂卤石晶体呈片状,多以绒球状集合体形式产出(图3b)。
图1 罗布泊盐湖区地质简图(据刘成林等, 2003a)
Fig.1 Schematic geological map of salt lake, Lop Nur (after Liu et al., 2003a)
图2 罗北凹地浅部杂卤石沉积类型a. 纹层状杂卤石(白色)与钙芒硝(灰色)互层,钻孔ZK0800,23 m;b. 含杂卤石钙芒硝,杂卤石呈白色分散于钙芒硝晶间,钻孔ZK1600,20.88 m
Fig.2 Types of polyhalite sediments in shallow of Luobei Saga. Laminated polyhalite (white) alternated with glauberite (gray), drill hole ZK0800, 23 m; b. Polyhalite-bearing glauberite, the white polyhalitescattered in intercrystalline glauberite, drill hole ZK1600, 20.88 m
图3 罗北凹地浅部杂卤石扫描电镜图像 a. 花瓣状杂卤石交代钙芒硝,ZK1200,14.10 m;b. 石盐晶间绒球状杂卤石集合体,ZK0401,12.90 m
Fig.3 SEM images of polyhalites in shallow Luobei Sag a. Flower-like aggregated polyhalite replaces glauberite, drill hole ZK1200, 14.10 m; b. Ball-like aggregated polyhalite in intercrystalline halites, drill hole ZK0401, 12.90 m
新近的勘探资料显示,罗北凹地浅部杂卤石分布面积约350 km2,蕴藏KCl资源量达千万吨。杂卤石埋藏深度为7.85~36.95 m,集中产出于10~25 m。累计厚度范围0.45~11.54 m,平均5.59 m。杂卤石层w(KCl)一般为3%~8%,最高达15.48%(王弭力等,2001)。从图4a、b可以看出,杂卤石累计厚度大、KCl含量高的地区基本重叠,即最大厚度区和KCl含量高区位于罗北凹地中南部,其次为东北部。
图4 罗北凹地浅部杂卤石分布特征 a. 累计厚度;b. 杂卤石KCl含量
Fig.4 Distribution of polyhalite sediments in shallow of Luobei Sag a. Accumulative thickness; b. KCl contents of polyhalite
2.2光卤石研究发现,在罗布泊盐湖区广泛分布有一系列NNE向的张性断陷带,向下延伸可达千米(刘成林等,2006)。在这些断陷带地表或近地表常常发育光卤石等钾盐矿物。其通常以2种形式产出,或与近地表粉砂混合产出形成含光卤石石盐的粉砂,或直接以纯的石盐和光卤石的形式沉积于地表。这种现象在罗布泊盐湖东部的铁南断陷带最为典型。2019年秋笔者团队和国投新疆罗布泊钾盐有限责任公司在铁南断陷带开展了联合调查,发现在无任何地表径流补给的情况下,铁南断陷带大部分已经被盐湖占据(图5),同时在湖岸地带发育众多大小不等“落陷洞”或者“粘附沙丘构造”。对铁南断陷带这种粘附沙丘进行光释光测年,结果显示,0.5 m和1.0 m处的细砂年龄分别为2180±200 a和3320±110 a,表明这些沉积物形成年代很新(刘成林等,2003b)。
对铁南断陷带湖水进行采样分析(表1),结果显示由于光卤石的大量析出,盐湖晶间卤水离子含量具有典型的“低钾高镁”的特征——湖水钾含量仅为1.05 g/L,镁含量高达141.85 g/L,显著区别于下伏钙芒硝晶间卤水的‘高钾低镁’——卤水钾含量达9 g/L,镁含量仅为11.28 g/L。这种现象显示,铁南凹地新生的光卤石湖在罗布泊极端干旱的气候条件下,仍在不断蒸发浓缩,并向泻利盐、水氯镁石等后期蒸发产物转变。
此外,对于罗布泊盐湖区钾盐科探1井(LDK01)的研究显示,光卤石/钾石盐沉积在其他断陷带深部仍有发育,其多产于埋深300 m以下的砂岩、砂砾岩等碎屑岩层中(焦鹏程等,2014),被认为是一种新型的钾盐资源,即碎屑岩型钾盐资源(刘成林等,2018)。
2.3钾盐镁矾钾盐镁矾矿物主要分布于罗北凹地与南部大耳朵之间的罗中地区(又称南小团地区,图1)。这些钾盐镁矾常以薄层的形式产出,埋深较浅,通常0.20~0.60 m,单晶多呈板状,集合体多呈粒状,其下伏沉积物基本上为粉砂黏土(刘成林等,2003a)。
前期勘查表明,南小团地区含钾盐镁矾层位可溶性w(KCl)高达21.93 %,加权平均值约5.12%(王弭力等,2001)。
图5 罗布泊东部铁南断陷带光卤石湖
Fig.5 Carnallite lake of Tienan fault sag in the eastern Lop Nur
文本框: 表1 罗布泊盐湖不同地区卤水化学成分(w(B)/g/L)
Table1 Average chemical compositions of brines from Lop Nur area(w(B)/g/L)
地点
储层
K+
Na+
Ca2+
Mg2+
Cl-
铁南断陷带
光卤石湖晶间
1.05
2.30
0.03
141.85
336.19
26.55
铁南断陷带
浅部含粉砂钙芒硝岩
9.00
108.51
0.15
11.28
161.5
61.44
罗北凹地
0~200 m钙芒硝岩
8.98
110.10
0.12
16.84
182.59
65.32
罗北凹地
500~800 m碎屑层
4.02
87.70
4.36
6.75
167.46
3.00
罗北凹地
800~1200 m碎屑层
0.27
54.25
8.34
3.62
107.18
1.95
大耳朵湖区
含膏碎屑层
3.12
69.06
1.82
2.78
115.95
6.09
文本框: 注:铁南断陷带钙芒硝晶间卤水数据自刘成林等(2020);大耳朵湖区卤水数据自孙小虹等(2016);罗北凹地卤水数据自Zhang等(2021)。
3讨论——固体钾盐成因钾盐易溶、难保存的特性决定了其形成往往需要构造-物源-气候等成钾要素在特定的时间窗内的极佳耦合(Warren,2010;Liu et al.,2015)。
在干旱气候的条件下,构造分异一方面使次级盆地进一步封闭局限,为卤水蒸发析盐提供场所;另一方面可能诱发盆地断裂发生活化,引起深部物质对盐湖补给,从而导致盐湖发生化学分异,形成不同类型的蒸发岩矿物组合和钾盐矿物类型。本质上,罗布泊盐湖不同类型钾盐沉积,受控于不同来源及不同化学类型的卤水。
3.1光卤石——深部氯化物型卤水补给为主自上新世晚期以来,罗布泊作为塔里木河流域的尾闾,接受周缘河流的大量成盐成钾物质补给。作为主要补给源的塔里木河水,在汇入罗布泊过程中,淋滤了大量塔里木盆地北缘和西南缘中新生代石膏等蒸发岩,从而导致水体具有典型的高SO、K+的特点,由此决定了罗布泊盐湖水体以硫酸盐型为主,对应蒸发岩以石膏、钙芒硝等硫酸盐型盐类矿物为主(刘成林等,1999;2010c;2020;伯英等,2012)。然而,无论是来自罗布泊罗北凹地钙芒硝晶间卤水(刘成林等,2006)还是南部大耳朵湖碎屑层晶间卤水(孙小虹等,2016)的自然蒸发实验,以及基于塔里木河中游地下水的模拟蒸发实验(Li et al.,2020),结果显示这些水体经蒸发浓缩,都无法直接形成现今罗布泊盐湖区观察到的巨量钙芒硝沉积,暗示除塔里木河地表径流补给外,罗布泊盐湖还应有深部流体补给(刘成林等,2003a;2006;2010a;伯英等,2012)。
如前所述,在罗布泊盐湖区广泛发育一系列北北东向的断陷带,其南北延伸30~50 km,向下延伸可达1000 m(刘成林等,2003b;2006;2010a;孟贵祥等,2010)。这些断陷带(近)地表发育的光卤石和钾石盐沉积,常与黏土粉砂混合产出或者直接形成于罗布泊干盐湖沉积之上,其明显不同于下伏浅部以钙芒硝岩为主体的硫酸盐型蒸发岩:一方面,罗布泊盐湖区现今已经完全干涸,没有地表径流直接补给;另一方面,钙芒硝晶间卤水成分显示罗北古盐湖尚未演化到石盐阶段。因此,断陷带内大量光卤石不是古盐湖残余卤水自身因蒸发作用直接析出的产物,其具有其他物质来源和形成方式。
新近的研究显示,罗布泊盐湖断陷带内深部碎屑岩层发育有CaCl2型卤水(Zhang et al.,2021),在水化学类型上明显不同于上部钙芒硝晶间的硫酸盐型卤水、塔里木河流域河水以及浅部地下水(表1)。这些深部卤水不仅富钙,还富集一定的钾。同时,在断陷带附近发育的众多落陷洞、类泥火山等沉积构造,指示断陷带内广泛存在深部流体向上运移的活动。而来自钙芒硝晶间卤水年龄与地层年龄研究对比的结果(刘成林等,2020),进一步说明罗布泊盐湖卤水存在强烈的深部-浅部对流循环作用。上述证据显示,罗布泊断陷带地表光卤石沉积是断陷带与深部CaCl2型卤水共同作用的结果。在断陷带形成过程中导致的围岩破碎,为深部流体向上运移提供了有利的通道(图6)。罗布泊盐湖断陷带近地表的含光卤石黏土粉砂,代表了深部流体沿断裂直接或联通浅部储卤层卤水排泄到地表,因其盐度高、黏附力强,不断吸附风成沉积的粉砂和黏土的产物。而东部的铁南断陷带现今出现的光卤石湖,则指示这种深部流体直接补给罗布泊干盐湖的作用至今仍在继续。
此外,除罗布泊断陷带地表外,深部碎屑岩层同样发现有光卤石和钾石盐沉积(焦鹏程等,2014),形成了“低品位、非常规”钾盐资源(刘成林等,2018)。这种成矿作用可能类似于察尔汗盐湖的“蒸发泵作用”成钾模式(许靖华等,1991)。当碎屑浅滩周期性暴露,强烈干旱的气候导致碎屑岩晶间卤水快速蒸发浓缩,并随着毛细管蒸发作用的持续进行,不断在近地表碎屑沉积物中形成钾石盐/光卤石等(孙小虹等,2016)。但与常规钾盐沉积相比,罗布泊深部光卤石和钾石盐产于碎屑岩层中,其不同于盐湖从碳酸盐-硫酸盐-氯化物-钾镁盐的正常蒸发序列;同时,与浅部蒸发岩序列相比,也明显缺少大量硫酸盐的析出阶段,而直接进入氯化物型钾镁盐阶段,指示了无论从物源还是沉积过程都与浅部具有明显不同,其成因值得进一步研究。
图6 罗布泊盐湖区上升卤水成钾示意图(据刘成林等, 2003a)
Fig.6 Schematic potash formation associated with ascending brine in Lop Nur (after Liu et al., 2003a)
3.2杂卤石——罗布泊硫酸盐型盐湖水-盐反应产物罗北凹地不同产出类型的杂卤石代表了盐湖不同演化阶段的水-盐反应的产物。罗北古盐湖发育过程中,由于石膏、钙芒硝等大量析出,钙急剧消耗,残余卤水中钾、镁元素得到富集,并与已生成的钙的硫酸盐发生反应,破坏古湖水原有的水化学平衡,朝着杂卤石结晶相区发展,出现杂卤石交代钙芒硝、石膏的现象(刘成林等,2008)。这种盐湖富钾镁卤水与石膏、钙芒硝等反应交代形成的杂卤石是罗北凹地杂卤石主要类型,这也是其他含盐盆地最为普遍的现象(Eugster et al.,1980;Harvie et al.,1980a;1980b;1982; Spencer, 2000)。含杂卤石的石盐/白钠镁矾代表罗北凹地盐湖演化至干盐湖阶段产物。地表径流暂时性补给盐湖,一方面,携带钙源与富集钾镁的石盐晶间卤水混合,改变结晶路线,形成石盐/白钠镁矾晶间的杂卤石;另一方面,淡化流体进入引起石盐或白钠镁矾溶解,也为杂卤石生长提供了空间(袁见齐等,1984;刘成林等,2008)。来自蒸发实验的结果表明,形成杂卤石的卤水不一定是饱和钾、镁盐的浓缩卤水,其在稀释一倍的条件下仍可以析出杂卤石,这种沉积作用可从石盐沉积的中后期一直延续到钾镁盐析出阶段(韩蔚田等,1982;艾子业,2019)。
此外,对杂卤石形成的物理化学条件研究表明(何法明等,1988;韩蔚田等,1982),杂卤石形成温度不低于13℃,且温度越高越有利于杂卤石析出。罗北凹地不同类型杂卤石集中产出于同一层段,显示了这一时期可能具有普遍高温的气候背景条件。Lü等(2018)和Sun等(2017)对杂卤石产出对应层段石盐层的年龄以及流体包裹体均一温度研究表明,该层段大致对应时间间隔为8 ka,罗布泊地区大气温度达到37.9~45.3℃。因此,罗北凹地杂卤石的形成进一步说明,当构造-物源-气候成钾要素满足时,短时间可以导致钾盐大规模聚集、成矿。中国发育有众多蒸发岩厚度大、分布广的含盐盆地,找准构造-物源-气候耦合的时间窗,对后期圈定有利成钾部位和层位具有重要意义。
3.3钾盐镁矾——高浓度卤水反灌、回流产物罗布泊盐湖钾盐镁矾集中产于南小团地区,其位于罗布泊盐湖罗北凹地与南部大耳朵湖连接地带。该区钾盐镁矾埋深浅,且直接覆于粉砂黏土之上,指示该区在沉积钾盐镁矾之前处于相对淡化的阶段。上覆钾盐镁矾的突然出现,明显跳过了盐湖早期析盐阶段,显示钾盐镁矾物质来源可能为已经经过蒸发浓缩的高浓度卤水。构造上,南小团为新构造运动中快速沉降的一个次级凹地(王弭力等,2001),地势较罗北凹地相对低洼。因此,晚期由于罗北凹地的抬升,区内高浓度卤水极有可能向南回流至南小团,经蒸发浓缩形成钾盐镁矾。
值得提及的是,尽管在实际的含盐地层中钾盐镁矾发育较为广泛。但已有的研究表明,在硫酸盐型盐湖体系中,钾盐镁矾矿物很难从卤水中直接蒸发析出或者需要足够长时间的缓慢蒸发才能形成,体现了钾盐镁矾的亚稳定性(Holser,1979;Wahed et al.,2015)。这些证据说明,除蒸发条件影响外,钾盐镁矾的形成还可能与蒸发过程中的水-盐反应以及外来水体的补给(即兑卤过程)有关。
4结论(1)罗北凹地浅部杂卤石代表了以硫酸盐型卤水为主的盐湖,在不同阶段水-盐反应的产物,其形成本质是钾、镁元素富集到一定程度的盐湖残余卤水,在高温气候条件下与含钙水体或者钙的硫酸盐相互作用的结果。
(2)断陷带发育的光卤石/钾石盐沉积,代表了构造导致的深部氯化物型卤水向上运移,或与原始卤水发生掺杂,从而改变原有析盐结晶路线,形成的典型氯化物型钾盐矿物。
(3)钾盐镁矾在南小团地区大量富集,显示了构造引起的基底抬升和倾斜,导致高浓度卤水回灌、蒸发浓缩形成。
(4)罗布泊盐湖区固体钾盐的形成有赖于构造-气候-物源3个要素的耦合:构造活动形成的次级凹地是固体钾盐聚集的有利场所,并且这一过程中导致的断裂活化为深部流体运移提供了通道,致使盐湖补给的物质来源发生变化,形成罗布泊盐湖区不同类型固体钾盐。
致 谢本文是在作者团队前期研究成果基础上整理而成,审稿专家对论文提出了建设性意见,提高了论文质量,在此一并表示谢意。
-
参考文献
References
Ai Z Y. 2019. Study on formation mechanism of polyhalite in Kunteyi Playa based on hydrochemical simulations[D]. Beijing: University of Chinese Academy of Sciences(Qinghai institute of salt lakes, Chinese Academy of Sciences)(in Chinese with English abstract).
Bo Y, Liu C L, Jiao P C and Ye X R. 2012. The mantle source noble gas from underground brine of the Lop Nur in Xinjiang and its scientific significance[J]. China Geology, 39(4): 978-984(in Chinese with English abstract).
Eugster H, Harvie C and Weare J. 1980. Mineral equilibria in a six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O at 25℃[J]. Geochimica et Cosmochimica Acta, 44: 1335-1347.
Guo Z J and Zhang Z C.1995. A new geological theory on the formation and evolution of Lop Nur[J]. Journal of University Geology, 1(2): 82-87(in Chinese with English abstract).
Han W T, Gu S Q and Cai K Q.1982. Formation condition of polyhalite in the system of K+, Na+, Mg2+, Ca2+/Cl- and SO42--H2O[J]. Chinese Science Bulletin, 27(6):362-365(in Chinese).
Harvie C and Weare J. 1980a. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-SO4-Cl-H2O system from zero to high concentrations at 25℃[J]. Geochimica et Cosmochimica Acta, 44: 981-997.
Harvie C, Weare J, Hardie L and Eugster H. 1980b. Evaporation of sea water: Calculated mineral sequence[J]. Science, 208: 498-500.
Harvie C, Eugster H and Weare J. 1982. Mineral equilibria in a six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O at 25℃.Ⅱ: Compositions of the saturated solutions[J]. Geochimica et Cosmochimica Acta, 46: 1603-1618.
He F M, Liu S C, Bai C Q, Yu X Z, Yan S R, Jiang M L and Zhou Q W. 1988. Identification method manual of saline minerals[M]. Beijing: Chemical Industry Publishing House(in Chinese).
Holser W. 1979. Chapter 8. Mineralogy of evaporates[A]. In: Burns R, ed. Marine minerals[M]. Berlin, Boston: De Gruyter. 211-294.
Jiao P C, Liu C L, Yan H, Chen Y Z, Gu X L, Sun X H, Xuan Z Q, Zhao H T and Li W X. 2014. New progress of potassium prospec-ting in deep salt lake of Lop Nur region in Xinjiang[J]. Acta Geologica Sinica, 88(6): 1011-1024(in Chinese with English abstract).
Jiao P C, Liu C L, Zhang H, Yan H, Zhang F K, Li W X, Wang L C, Jiao D, Zhang Y and Shen L J. 2018. New progress of potassium-bea-ring brine prospecting in deep salt lake of Lop Nur region[J]. Mine-ral Deposits, 37(1): 191-194(in Chinese).
Li R Q, Liu C L, Xu H M, Jiao P C, Hu Y F, Fan L and Sun X H. 2020. Genesis of glauberite sedimentation in Lop Nur salt lake-constrains from thermodynamic simulation of the shallow groundwater in the Tarim River Basin, China[J]. Chemical Geology, 537: 119461.
Liu C L and Wang M L. 1999. Evolution of Quaternary depositional environments and formation of potash deposits in Lop Nur lake, Xinjiang, China[J]. Acta Geoscientica Sinica, 20(Supp.): 264-270(in Chinese with English abstract).
Liu C L, Wang M L, Jiao P C, Chen Y Z and Li S D. 2002. Formation of pores and brine reserving mechanism of the aquifers in Quaternary potash deposits in Lop Nur Lake, Xinjiang, China[J]. Geological Review, 48(4): 437-443(in Chinese with English abstract).
Liu C L, Jiao P C, Wang M L, Li S D and Chen Y Z. 2003a. Ascending brine fluids in Quaternary salty lake of Lop Nur in Xinjiang and their significance in potash formation[J]. Mineral Deposits, 22(4): 386-392(in Chinese with English abstract).
Liu C L. 2003b. New progress of research and evaluation of potash resources in peripheral area of Lop Nur salt lake[J]. Mineral Depo-sits, 22(3): 286(in Chinese).
Liu C L, Chen Y Z, Jiao P C and Wang M L. 2006. Crystallizing experiments and probing of chemical reaction of glauberite, Lop Nur salt lake, Xinjiang, China[J]. Mineral Deposits, 25(Supp.): 223-236(in Chinese).
Liu C L, Wang M L, Jiao P C, Fan W D, Chen Y Z, Yang Z C and Wang J G. 2008. Sedimentary characteristics and origin of polyhalite in Lop Nur salt lake, Xinjiang[J]. Mineral Deposits, 27(6):705-713(in Chinese with English abstract).
Liu C L, Wang M L, Jiao P C and Chen Y Z. 2009. The probing of re-gularity and controlling factors of potash deposits distribution in Lop Nur salt lake, Xinjiang[J]. Acta Geoscientica Sinica, 30(6): 796-802(in Chinese with English abstract).
Liu C L, Jiao P C, Chen Y Z and Wang M L. 2010a. Formation mechanism of potash-bearing brine in fault belts of Lop Nur Lake, Xinjiang[J]. Mineral Deposits, 29(4): 602-608(in Chinese with English abstract).
Liu C L, Jiao P C and Wang M L. 2010b. A tentative discussion on exploration model for potash deposits in basins of China[J]. Mineral Deposits, 29(4): 581-592(in Chinese with English abstract).
Liu C L, Ma L C, Jiao P C, Sun X H and Chen Y Z. 2010c. Chemical sedimentary sequence of Lop Nur salt lake in Xinjiang and its controlling factors[J]. Mineral Deposits, 29(4):625-630(in Chinese with English abstract).
Liu C L, Jiao P C, Lü F L, Wang Y Z, Sun X H, Zhang H, Wang L C and Yao F J. 2015. The impact of the linked factors of provenance, tectonics and climate on potash formation: An example from the potash deposits of Lop Nur depression in Tarim Basin, Xinjiang, western China[J]. Acta Geologica Sinica (English edition), 89(6): 2030-2047.
Liu C L, Jiao P C, Sun X H, Lü F L and Zhang H. 2018. Research on potash forming and exploration progress in potash deposits in the Lop Nur salt lake[J]. Acta Geologica Sinica, 92(8): 1551-1570(in Chinese with English abstract).
Liu C L, Jiao P C, Wang M L, Yan H, Chen Y Z, Sun X H, Bo Y, Xuan Z Q, Lü F L, Zhang H, Wang Y Z, Zhao Y Y and Li Y H. 2020. Formation condition and regularity of potash deposits in Lop Nur salt lake[M]. Beijing: Science Press. (in Chinese).
Lü F L, Liu C L, Jiao P C, Yan H, Zhang H, Zhao Y J and Wang L C. 2015. The discussion on sedimentary characteristics phased evolution and controlling factors of saline lake in Asia interior: Records from deep drill cores of LDK01 in Lop Nur, Xinjiang, northwestern China[J]. Acta Petrologica Sinica, 31(9):2770-2782(in Chinese with English abstract).
Lü F L, Liu C L, Jiao P C, Zhang H and Sun X H. 2018. Provenance of the Quaternary lake basin and tectonic evolution of the basin in Lop Nur: Evidence from detrital zircon U-Pb age of croe LDK01[J]. Acta Geologica Sinica, 92(8):1571-1588(in Chinese with English abstract).
Lü F L, Liu C L, Jiao P C, Zhao J X and Zhang H. 2018. The first halite age revealed by MC-ICP-MS U-series dating in Lop Nur, northwestern China[J]. Acta Geologica Sinica(English Edition), 92 (2): 881-882.
Meng G X, Yan J Y, Lü Q T, Jiao P C, Yan H, Liu C F and Liu C L. 2010. New discovery of Lop Nur salt basin structure and its significance for potash deposit exploration[J]. Mineral Deposits, 29(4): 609-615(in Chinese with English abstract).
Peryt T, Pierre C and Gryniv S. 1998. Origin of polyhalite in the Zechstein (Upper Permian) Zdrada platform (northern Poland)[J]. Sedimentology, 45(3): 565-578.
Peryt T, Tomassi-Morawiec H, Czapowski G, Hryniv S, Pueyo J, Eas-toe C and Vovnyuk S. 2005. Polyhalite occurrence in the Werra(Zechstein, Upper Permian) peribaltic basin of Poland and Russia: Evaporite facies constraints[J]. Carbonates and Evaporites, 20(2): 182-194.
Spencer R. 2000. Sulfate minerals in evaporite deposits[J]. Reviews in Mineralogy and Geochemistry, 40(1): 173-192.
Sun X H, Liu C L, Jiao P C, Yan H, Chen Y Z, Ma L C, Zhang Y M, Wang C L and Li W X. 2016. A further discussion on genesis of potassium-rich brine in Lop Nur: Evaporating experiments for brine in gypsum-bearing clastic strata[J]. Mineral Deposits, 35(6): 1190-1204(in Chinese with English abstract).
Sun X H, Zhao Y J, Liu C L, Jiao P C, Zhang H and Wu C H. 2017. Paleoclimatic information recorded in fluid inclusions in halites from Lop Nur, western China[J]. Scientific Reports, 7(1):16411.
Wahed M, Mohamed E, El-Sayed M, M’nif A and Sillanpää M. 2015. Crystallization sequence during evaporation of a high concentra-ted brine involving the system Na-K-Mg-Cl-SO4-H2O[J]. Desalination, 355: 11-21.
Wang M L, Li T Q, Liu C L, Yang Z C and Li C H. 1996. Major discovery of Potassium deposit in Luobei depression, Lop Nur, Xinjiang[A]. Selected papers of the academic exchange meeting on important achievements of geological science during the Eighth Five year Plan[C]. Beijing: Metallurgical Industry Press(in Chinese).
Wang M L, Liu C L, Jiao P C, Yang Z C and Li Y W. 1998. Characteristics and exploitation prospects of super large potash deposits in Luobei Depression, Lop Nur[J]. Mineral Deposits, 17 (Supp.): 433-436(in Chinese).
Wang M L, Liu C L, Jiao P C, Han W T, Song S S, Chen Y Z, Yang Z C, Fan W D, Li T Q, Li C H, Feng J X, Chen J Z, Wang X M, Yu Z H and Li Y W. 2001. Saline lake potash resources in the Lop Nur, Xinjiang[M]. Beijing: Geological Publishing House(in Chinese).
Warren J. 2010. Evaporites through time: Tectonic, climatic and eusta-tic controls in marine and nonmarine deposits[J]. Earth Science Review, 98: 217-268.
Xu J H, Qian Z H, Lian W, Yuan Z, Chen Y C, Wu B H and Wang M L. 1991. Evaporating pump genesis of the potash deposit in Chaerhan Salt Lake, China[J]. Geology of Chemical Minerals, (4):1-6(in Chinese).
Yuan J Q and Cai K Q. 1984. The evolution stages and characteristics of salt precipitation[A]. Sedimentology and organic geochemistry symposium[C]. Beijing: Science Press.146-151(in Chinese).
Zhang H, Jiao P C, Liu C L, Yan H, Zhang F K, Li W X, Yu Y M, Wang L S, Hu Y F, Wang L C and Shen L J. 2021. Discovery of the Ca-Cl type brine in deep aquifers and implications for the shallow giant glauberite deposits in the Lop Nur playa, Tarim Basin, NW China[J]. China Geology (English Edition), 2: 1-3.
Zhao H T, Liu C L, Jiao P C, Sun X H and Li D X. 2014.Morphology characteristics and influential factors of glauberite growth from Lop Nur Salt Lake, China[J]. Acta Mineralogica Sinica, 34(1): 97-106(in Chinese with English abstract).
附中文参考文献
艾子业. 2019.基于水文地球化学模拟的昆特依盐湖杂卤石成矿作用研究[D].北京:中国科学院大学(中国科学院青海盐湖研究所).
伯英,刘成林,焦鹏程,叶先仁. 2012.罗布泊地下卤水中幔源稀有气体及其意义[J].中国地质,39(4): 978-984.
郭召杰,张志诚. 1995.罗布泊形成及演化的地质新说[J].高校地质学报,1(2): 82-87.
韩蔚田,谷树起,蔡克勤. 1982. K+、Na+、Mg2+、Ca2+/Cl-、SO42--H2O六元体系中杂卤石形成条件的研究[J].科学通报,27(6): 362-365.
何法明,刘世昌,白崇庆,喻显珍,严肃蓉,蒋铭廉,周清文. 1988.盐类矿物鉴定工作方法手册[M].北京:化学工业出版社.
焦鹏程,刘成林,颜辉,陈永志,顾新鲁,孙小虹,宣之强,赵海彤,李文学. 2014.新疆罗布泊盐湖深部钾盐找矿新进展[J].地质学报,88(6): 1011-1024.
焦鹏程,刘成林,张华,颜辉,张凡凯,李文学,王立成,焦丁,张云,沈立建. 2018.罗布泊盐湖深部卤水钾盐找矿取得新进展[J].矿床地质,37(1): 191-194.
刘成林,王弭力. 1999.罗布泊第四纪沉积环境演化与成钾作用[J].地球学报,20(增刊): 264-270.
刘成林,王弭力,焦鹏程,陈永志,李树德. 2002.罗布泊第四纪卤水钾矿储层孔隙成因与储集机理研究[J].地质论评,48(4): 437-443.
刘成林,焦鹏程,王弭力,李树德,陈永志. 2003a.新疆罗布泊第四纪盐湖上升卤水流体及其成钾意义[J].矿床地质,22(4): 386-392.
刘成林. 2003b.罗布泊钾矿区外围盐湖钾盐资源研究与评价新进展[J].矿床地质,22(3): 286.
刘成林,陈永志,焦鹏程,王弭力. 2006.罗布泊盐湖钙芒硝结晶实验与化学反应探讨[J].矿床地质,25(增刊): 223-236.
刘成林,王弭力,焦鹏程,樊卫东,陈永志,杨智琛,王敬国. 2008.罗布泊杂卤石沉积特征及成因机理探讨[J].矿床地质,27(6): 705-713.
刘成林,王弭力,焦鹏程,陈永志. 2009.罗布泊盐湖钾盐矿床分布规律及控制因素分析[J].地球学报,30(6): 796-802.
刘成林,焦鹏程,陈永志,王弭力. 2010a.罗布泊断陷带内形成富钾卤水机理研究[J].矿床地质,29(4): 602-608.
刘成林,焦鹏程,王弭力. 2010b.盆地钾盐找矿模型探讨[J].矿床地质,29(4): 581-592.
刘成林,马黎春,焦鹏程,孙小虹,陈永志. 2010c.罗布泊盐湖化学沉积序列及其控制因素[J].矿床地质,29(4): 625-630.
刘成林,焦鹏程,孙小虹,吕凤琳,张华. 2018.罗布泊盐湖成钾规律研究与找矿进展[J].地质学报,92(8): 1551-1570.
刘成林,焦鹏程,王弭力,颜辉,陈永志,孙小虹,伯英,宣之强,吕凤琳,张华,王永志,赵元艺,李延河. 2020.罗布泊盐湖钾盐矿床形成条件与规律[M].北京:科学出版社.
吕凤琳,刘成林,焦鹏程,颜辉,张华,赵艳军,王立成. 2015.亚洲大陆内部盐湖沉积特征、阶段性演化及其控制因素探讨——于罗布泊LDK01深孔岩心记录[J].岩石学报,31(9): 2770-2782.
吕凤琳,刘成林,焦鹏程,张华,孙小虹. 2018.罗布泊第四纪湖盆物源与盆地构造演化特征:来自LDK01孔碎屑锆石U-Pb年龄证据[J].地质学报,92(8): 1571-1588.
孟贵祥,严加永,吕庆田,焦鹏程,颜辉,刘传福,刘成林. 2010.罗布泊盐湖盆地结构新发现及找钾意义[J].矿床地质,29(4): 609-615.
孙小虹,刘成林,焦鹏程,颜辉,陈永志,马黎春,张永明,王春连,李文学. 2016.罗布泊盐湖富钾卤水成因再探讨——碎屑层卤水蒸发实验分析[J].矿床地质,35 (6): 1190-1204.
王弭力,李廷祺,刘成林,杨智琛,李长华. 1996.新疆罗布泊罗北凹地钾矿的重大发现[A]. “八五”地质科学重要成果学术交流会议论文选集[C].北京:冶金工业出版社. 446-449.
王弭力,刘成林,焦鹏程,杨智琛,李亚文. 1998.罗布泊罗北凹地超大型钾盐矿床特征及其开发前景[J].矿床地质,17(增): 433-436.
王弭力,刘成林,焦鹏程,韩蔚田,宋松山,陈永志,杨智琛,樊卫东,李廷祺,李长华,冯金星,陈建忠,王新民,于志鸿,李亚文. 2001.罗布泊盐湖钾盐资源[M].北京:地质出版社.
许靖华,钱作华,连卫,袁遵,陈延成,吴必豪,王弭力. 1991.中国察尔汗湖钾盐蒸发泵成因[J].化工矿产地质,(4): 1-6.
袁见齐,蔡克勤. 1984.盐类沉积的演化阶段及其特征[A].沉积和有机地球化学学术论文选集[C].北京:科学出版社. 146-151.
赵海彤,刘成林,焦鹏程,孙小虹,李德先. 2014.罗布泊干盐湖钙芒硝形貌特征及生长影响因素[J].矿物学报,34(1): 97-106.
摘要
文章对罗布泊盐湖区杂卤石、光卤石、钾盐镁矾等不同类型固体钾盐矿物特征、分布及成因进行了分析总结。杂卤石主要产于罗北凹地内部沉降区,以交代成因类型为主,代表了以硫酸盐型卤水为主体的罗布泊盐湖残余卤水钾镁富集到一定程度与石膏、钙芒硝发生水-盐反应的产物。光卤石沉积主要产于断陷带(近)地表,为深部氯化物型卤水经断裂向上运移至地表、与浅部卤水掺杂经蒸发浓缩而成。钾盐镁矾主要产于南小团地区,其形成可能与凹陷基底反转、罗北凹地高浓度卤水回灌有关。罗布泊盐湖区不同类型的固体钾盐沉积是构造-物源-气候3种成钾要素在特定时间窗下耦合的产物:在干旱气候条件下,构造活动一方面导致盆地地貌分异形成更加封闭的成钾次级凹地,为钾盐沉积提供可容纳空间;另一方面活化断裂为深部流体补给盐湖提供通道,为钾盐沉积提供不同类型的物质来源,改变盐湖卤水化学组成最终形成不同类型钾盐矿物。
Abstract
The sedimentary characteristics, spatial-temporal distribution and genetic formation of various solid potash deposits, mainly including polyhalite, carnallite and kainite in Lop Nur were summarized in this study. Polyhalite sediments mainly formed in subsidence area of Luobei Sag and are characterized by replacement origin. They represent products of water-salt interaction of the potassium- and magnesium-rich residual brine with the existed calcium sulfate like gypsum and glauberite in sulfate-type lake. Sediments of carnallite mainly occur on the surface or near surface of fault zones in Lop Nur that fed by the deep CaCl-type brine through faults. The kainite sediments mainly distributed in Nanxiaotuan area and sourced from recharges of evaporated brine in Luobei Sag due to basement inversion. The formation of solid potassium sediments in Lop Nur rely on the coupling of tectonics, provenances and arid climate in a special time window. Under the arid climate condition, the tectonic activities lead geomorphic divides to form more closed sub-sage that provides accommodations for potash deposits. On the other hand, it reactivated fault to offer essential channels for upward migration of deep fluids that modified chemical composition of lake brine to finally form various potash sediments.