-
广东莲花山断裂带是华南沿海地区一条重要的钨锡铜铅锌多金属成矿带(Yan et al., 2022),沿断裂带分布有金坑锡铜铅锌矿、长埔锡铅锌矿、吉水门锡铅锌矿、梅陇铅锌锡矿、塌山锡矿等多金属矿床,但目前发现的矿床仍以中小型为主,深部成矿潜力巨大(汪礼明等, 2014;王军等, 2021)。
金坑锡铜多金属矿位于粤东莲花山断裂带的北东段,是近些年来在粤东地区新发现的典型锡铜多金属矿床(汪礼明等, 2014)。前人对金坑矿床开展了大量成岩成矿年代学、岩石地球化学、控矿构造等研究,限定成矿花岗岩成岩年龄为144.7~141.0 Ma,锡矿成矿年龄为~140 Ma(Qiu et al., 2017b;江丞曜等, 2021)。对于锡铜共生机制,江丞曜等(2021)提出富锡的还原性岩浆热液流体对围岩中铜铅锌等成矿元素的萃取,并随流体温度、盐度的持续下降,发生铜铅锌和剩余锡在构造带内沉淀,从而造成了锡铜共生成矿。刘鹏等(2021)提出无侵入岩出露的早白垩世火山盆地深部,是锡矿找矿勘查更有利靶区。通过对莲花山断裂带韧性剪切的温压条件及钨锡铜多金属矿分布特征的研究,王军等(2021)认为本区锡铜多金属矿在时空上主要受控于韧性剪切作用。造成争议的焦点在于缺乏对锡铜共生成矿机制的精细解剖,这直接制约了下一步勘探工作部署。
值得注意的是,粤东地区在160~150 Ma之间存在一期重要的Cu-Mo-Au成矿事件,先后发育多个铜多金属矿床(王小雨等, 2016;刘鹏, 2018; Jia et al., 2019),同时,多个锡多金属矿床中普遍发育黄铜矿(王晓虎等, 2020)。因此,金坑矿床中锡、铜共生是同一岩浆热液演化的结果,还是多期成矿事件叠加,需要开展进一步的研究,这将对揭示莲花山断裂带成矿规律具有重要意义。
本次工作在金坑锡铜多金属矿马山矿段首次发现了热液隐爆角砾岩,并伴有明显的铜富集特征,可能代表该区存在明显的铜矿化事件,对于剖析锡铜共生成矿有重要价值。鉴于此,本文在系统的岩芯编录工作基础上,对金坑矿区揭露的热液隐爆角砾岩中花岗质角砾开展了详细的锆石U-Pb定年,并对矿区广泛发育的金属硫化物开展了详细的原位硫同位素分析,结合前人研究成果,尝试探讨金坑锡铜多金属矿的成因机制,提出区域找矿方向。
1区域地质粤东位于中国东南沿海地区,区内的断裂构造十分发育,以NE向深大断裂最为发育,自北向南依次为丰顺-海丰,惠来-饶平断裂带和普宁-潮安断裂带(刘鹏等, 2015)。NE向断裂与NW向、EW向断裂交汇位置常发育火山岩盆地、花岗质岩石及其相关的矿产(徐晓春等, 1999;刘鹏, 2018)(图1)。莲花山断裂带横穿本区,广东省境内全长约500 km,宽20~40 km,局部可达60 km,由多条断裂组成,根据其产出部位可分成东、西两束,东断裂束分布于莲花山南东侧,走向NE,40°~50°,倾向SE,倾角40°~70°。西断裂束分布于莲花山NW侧,走向NE,30°~50°,倾向NW,倾角40°~85°,在剖面上倾向相反,倾角相近,为一对冲结构(郭锐, 2008;王晓虎等, 2020)。区内出露地层主要为上三叠统到下侏罗统的火山-沉积岩地层和第四系沉积地层,白垩纪少量分布于区域NE向断裂组形成的盆地中。区内出露的侵入岩主要是侏罗纪—白垩纪花岗岩,多呈岩基和岩株状产出,粤东地区晚中生代大规模的岩浆活动促成了该区域发育大量的钨锡铜铅锌等矿产。这些矿产主要沿NE向的莲花山断裂带及其次级断裂交汇部位分布,与区内晚中生代火山-侵入岩密切相关。
区内锡矿分布最为广泛、种类多样,最主要的类型为锡石-硫化物型锡矿,如吉水门、长埔、横田、牛头山、厚婆坳、金坑等,该类矿床的矿体多受断裂控制,大量发育锡石-硫化物脉;此外,还有云英岩型钨锡矿,如飞鹅山钨锡矿;斑岩型钨锡矿,如莲花山钨矿(刘鹏, 2018)、塌山锡矿(闫庆贺等, 2018)。
2矿床地质金坑锡铜多金属矿床位于广东省揭西县城NNW向约10 km处,地处粤东莲花山NE向断裂带的NE段。矿区划分为4个矿段,分别为马山、崆角、赤告岭和黄竹嶂,主矿段为马山和崆角。目前,该区已探明金属量为Cu11万t(平均品位为Cu=0.68%)、Sn0.78万t(Sn=0.29%)、Pb2.7万t(Pb=1.43%)、Zn1.47万t(Zn=1.68%)(广东省有色金属地质局九三一队, 2015)。
矿区出露地层主要为中侏罗统—上侏罗统热水洞组和第四系,其中热水洞组为矿区主要赋矿地层(图2)。热水洞组整体走向25°~45°,倾向SE,倾角30°左右,厚约79~1144 m,主要由流纹质晶屑凝灰岩、流纹质凝灰岩、流纹斑岩、石英斑岩及凝灰质板岩组成。岩石受到了明显的变质作用影响,可见片理化、糜棱岩化等现象。第四系主要为残积、冲积物。
矿区断裂极为发育,主要为NE向、NW向和近SN向3组,断层存在多期活动且具压扭—张性特征,NW向和NE向断裂及其次级断裂(裂隙)是矿区主要导矿、容矿构造(朱沛云等, 2018)。矿区动力变质强烈,主要表现为强烈的片理化带,变质带宽约2 km,走向NE,强烈片理化作用使矿区岩层层间滑动构造非常发育,并提供了有利的热液运移及成矿、储矿空间。
矿区岩浆岩主要出露于矿区西北部,主要为细粒黑云母花岗岩(141.1 Ma, Qiu et al., 2017b)、花岗闪长斑岩(147.4 Ma,江丞曜等, 2021)和中粗粒黑云母花岗岩(144~145 Ma, Qiu et al., 2017b),此外还有少量中基性岩脉发育。花岗闪长斑岩主要出露在崆角矿段;细粒花岗岩主要出露在黄竹嶂、马山和崆角矿段,中粗粒黑云母花岗岩主要出露于矿区的北西角。
矿区共发现54条矿(化)体,其中马山矿段43条、崆角矿段4条、赤告岭矿段4条、黄竹嶂矿段3条。矿体多呈脉状产于NE向或NW向的片理化带中,严格受动力变质带控制。矿区内矿体较多而厚度较小、多呈脉状、透镜状、似层状(图3)。通过钻孔岩心编录,于马山矿段JK302钻孔约100 m深处发现隐爆角砾岩,角砾成分为细粒花岗岩,花岗岩发育较强的硅化、绿帘石化、绿泥石化蚀变,胶结物中黄铜矿发育。隐爆角砾岩上部围岩硅化、绿泥石化蚀变强烈,铜品位明显升高,指示隐伏细粒花岗岩具有一定铜矿成矿潜力。
马山矿段已发现矿体以铜矿为主,铅锌矿和锡矿次之,形成北东走向长1500 m、宽800 m,最大延深约1200 m,最大厚度约500 m的矿脉带。矿脉带中部较密集,主要分布于4~7线,见有35~40条矿脉,而南北两端相对稀疏,单脉厚度为0.50~17.95 m,脉距为2.00~20.00 m。在0线和3线有钻孔系统控制,矿化富集段主要分布于标高100~200 m。矿体产于片理化流纹斑岩、凝灰岩、凝灰质粉砂岩、片岩、炭质泥岩等动力热变质构造蚀变带中,矿体赋存受动力热变质构造蚀变带控制,矿脉与围岩界限不清。矿体以细脉状、浸染状为主,局部呈团块状。矿体走向5°~40°,倾向SE,倾角25°~50°,中部新发现矿体产状较缓,倾角多为25°~30°。
马山矿段矿石矿物主要有黄铜矿、方铅矿、闪锌矿、锡石、毒砂、黄铁矿、磁黄铁矿,其次有蓝铜矿、孔雀石、铜蓝、黑钨矿、磁铁矿、褐铁矿等,脉石矿物主要包括石英、长石、绿泥石、方解石、萤石、白云母、绢云母、石榴子石、金红石等。矿区的围岩蚀变主要发育因动力变质产生的石榴子石化,以及热液活动所引发的黑云母化、硅化、绿帘石化、绿泥石化等。
黄铜矿是主要金属矿物之一,呈半自形或他形粒状分布,常与闪锌矿、磁黄铁矿、黄铁矿共生,少量黄铜矿呈“蠕虫状”分布于闪锌矿中。黄铁矿呈半自形-他形粒状分布,局部聚集成团粒状、脉状。闪锌矿呈半自形等轴晶粒状分布,常与磁黄铁矿、黄铜矿共生,部分磁黄铁矿和黄铜矿在闪锌矿中呈固溶体分离之蠕虫状分布。
图1粤东地区大地构造位置图(a)及地质矿产简图(b)(据刘鹏等, 2021)
Fig. 1 Geotectonic location map (a) and geological map (b) of eastern Guangdong Province (after Liu et al., 2021)
根据岩芯样品的脉系穿插关系、矿物共生组合、矿化类型、薄片显微镜下观察及扫描电镜分析,结合前人研究工作,我们初步确定了5个热液阶段:①动力变质前火山岩沉积阶段,热水洞组火山碎屑岩中沉积黄铁矿,后期受到构造作用的影响,呈带状破碎;②动力变质阶段,韧性剪切带在动力变质作用过程中形成了石榴子石和绢云母,石榴子石发生了破碎并被之后的热液活动改造,形成了石英-黑云母-石榴子石-黄铁矿-黄铜矿-闪锌矿型矿石;③热液隐爆角砾岩阶段,即石英-绿泥石-硫化物阶段,主要矿物为黄铜矿、黄铁矿、石英、蠕虫状绿泥石-绢云母,围岩蚀变主要是绢云母化、硅化和绿泥石化,热液隐爆角砾型矿石,黄铜矿以胶结物包体和石英-绿泥石细脉两种形式存在;④石英-方解石-硫化物阶段,主要为石英、方解石、黄铁矿、黄铜矿,穿切热液隐爆角砾岩型矿石,形成脉状黄铜矿矿石;⑤锡石-硫化物阶段,主要矿物为锡石、黄铜矿、黄铁矿、闪锌矿、方铅矿、石英、黑云母以及少量毒砂和绿泥石,围岩蚀变主要是黑云母化、硅化和绿泥石化,形成锡石-硫化物-石英-黑云母型矿石。
3样品采集与分析方法3.1样品采集JK302-22为未变形的细粒花岗岩,采自钻孔金坑矿床马山矿段3号勘探线302孔102 m深处。JK305-39为变形的花岗闪长岩,采自3号勘探线305孔624 m深处。其中,细粒花岗岩呈花岗结构,灰白色,主要矿物为钾长石(35%)、石英(30%)、斜长石(25%)、黑云母(5%~10%),有明显热液隐爆角砾发育,角砾成分为细粒花岗岩(图4),本次采集测年样品即细粒花岗岩角砾。变形的花岗闪长岩,似斑状结构,斑晶主要为斜长石(10%)、钾长石(5%~10%),基质主要由长石(45%)、石英(20%)、黑云母(15%)组成。
图2揭阳县金坑矿区地质简图(据广东省有色金属地质局九三一队, 2015修改)
Fig. 2 Geological map of Jinkeng mining area, Jieyang County (modified after Guangdong Bureau of Non-Ferrous Metals Geology No.931, 2015)
测试硫化物样品均来自马山矿段矿石样品。其中JK-5为浸染状矿石,受动力变质作用的影响,岩石呈强烈的片理化现象,原火山岩中黄铁矿颗粒受到后期动力变形的影响,形成线状破裂,并残留大量细小黄铁矿颗粒。JK-8、9、16、19为韧性剪切带在动力变质作用过程中形成的石英-黑云母-石榴子石硫化物型矿石,硫化物多沿显微线性构造展布。JK302-22为热液隐爆角砾岩型矿石,矿石中黄铜矿-黄铁矿与石英、绿泥石以胶结物形式胶结细粒花岗岩角砾,角砾构造清晰。JK302-23为石英-绿泥石-硫化物脉型矿石,脉宽约1~3 cm,脉壁平直,后期有细小石英-方解石脉穿切(图4)。
3.2分析方法(1) 锆石U-Pb定年
蚀变细粒花岗岩锆石分选在廊坊进行。机械性粉碎含有锆石的岩石样品至80目,重力、磁力分选后利用双目镜把锆石颗粒挑出。挑选出的锆石样品在北京锆年领航科技有限公司完成制靶和阴极发光照相。在双目镜下,选择透明、无包裹体、无裂隙、晶型好、颗粒较大的锆石单矿物粘在双面胶上,利用无色透明的环氧树脂固定,待环氧树脂固化后,将锆石抛光,使其内部结构剖面充分暴露。完成制靶后,对样品进行阴极发光图像(CL)采集,以便观察锆石的内部结构,帮助选择适宜的测试点位。
图3揭阳县马山矿段金坑矿区3线钻孔剖面图(据广东省有色金属地质局九三一队,2015修改)
Fig. 3 Profile of exploration Line 3, Mashan Section, Jinkeng mining area, Jieyang County (modified after Guangdong Bureau of Non-Ferrous Metals Geology No.931, 2015)
单颗粒锆石LA-ICP-MS原位U-Pb同位素分析在北京锆年领航有限公司完成。激光剥蚀系统为New Wave UP213,ICP-MS为布鲁克M90。激光剥蚀过程中采用He作载气、Ar为补偿气以调节灵敏度,二者在进入ICP之前通过一个匀化混合器混合。锆石U-Pb分析采用激光剥蚀孔径33 μm,剥蚀深度20~40 μm,激光脉冲为10 Hz,能量为32~36 MJ。每个时间分辨分析数据包括大约20~30 s的空白信号和50 s的样品信号。U-Pb同位素定年中采用锆石标准91500作外标进行同位素分馏校正,每分析5个样品点,分析2次91500。对于与分析时间有关的U-Th-Pb同位素比值漂移,利用91500的变化采用线性内插的方式进行校正。锆石标准91500的U-Th-Pb同位素比值的推荐值采用(Wiedenbeck et al., 1995)。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Th-Pb同位素比值和年龄计算)采用软件ICPMSDataCal完成,详细的仪器操作条件和数据处理方法同Liu等(2008; 2010)。锆石的谐和图以及年龄频率图用Isoplot(version 3.0)绘制。年轻的锆石(<1 Ga)采用206Pb/238U年龄。同位素比值及年龄误差均为1σ。
(2) 锆石Hf同位素分析
在完成上述锆石U-Pb同位素分析之后,对所测试锆石进行原位Hf同位素分析。Hf同位素测试位置与U-Pb定年点位相同或靠近。锆石原位Lu-Hf同位素测年在北京锆年领航有限公司美国热电Nepturn-plus MC-ICP-MS与NewWave UP213激光烧蚀进样系统测试完成。分析时激光束直径为35 μm,剥蚀使用频率为8 Hz,能量为16 J/cm2的激光剥蚀31 s,测定时用锆石国际标样91500作外标,仪器运行条件及详细分析步骤与校准方法类似于Wu等(2006)。Hf同位素模式年龄的计算公式与计算过程中各种参数的选择参考文献Blicherttoft等(1998)和Griffin等(2000)。
(3) 原位S同位素分析
微区原位硫化物硫同位素分析在武汉上谱分析科技有限责任公司利用激光剥蚀多接收杯电感耦合等离子体质谱(LA-MC-ICP-MS)完成。激光剥蚀系统为Geolas HD(Coherent,德国),MC-ICP-MS为Neptune Plus(Thermo Fisher Scientific,德国)。激光剥蚀系统使用氦气作为载气。分析采用单点模式,为了解决分析过程中硫同位素比值的Down Hole分馏效应(Fu et al., 2016),采用大束斑(44 μm)和低频率(2 Hz)的激光条件,单次分析约剥蚀100个激光脉冲。同时配备了信号平滑装置(Hu et al., 2015),确保在低频率条件下获得稳定的信号。激光能量密度固定5.0 mJ/cm2。质谱仪Neptune Plus配备9个法拉第杯和1011欧姆电阻放大器,采用L3、C和H3三个法拉第杯同时静态接收32S、33S和34S信号。高性能的Jet+X锥组合被采用提高信号强度。氮气(4 mL/min)被引入等离子体降低多原子离子干扰。中分辨模式(约5000)被采用。
硫同位素质量分馏采用SSB方法校正。为避免基体效应,黄铁矿样品采用黄铁矿参考物质PPP-1校正,黄铜矿样品采用国家黄铜矿标准物质GBW07268的粉末压片校正。以上样品δ34Sv-CDT推荐值参考(Fu et al., 2016)。测试过程中,实验室内部磁黄铁矿参考物质SP-Po-01(δ34Sv-CDT=1.4±0.4),黄铜矿参考物质SP-CP-01(δ34Sv-CDT=5.5±0.3)和国际硫化银标准物质IAEA-S-2(δ34Sv-CDT=22.58±0.39)和IAEA-S-3(δ34Sv-CDT=-32.18±0.45)作为质量监控样品被重复分析,验证实验方法的准确性。详细的仪器操作条件和分析测试方法可以参考(Fu et al., 2016)。全部分析数据采用专业同位素数据处理软件“Iso-Compass”进行数据处理(Zhang et al., 2020)。
4分析结果4.1锆石U-Pb测年结果细粒花岗岩角砾样品(JK302-22)的锆石晶型良好,颗粒普遍较大,粒径一般为100~200 μm,长宽比为1∶1~2∶1,锆石多为浅黄色-无色透明,总体为自形柱状,锆石阴极发光图像显示,内部具有典型的振荡韵律环带结构(图5)。
w(U)为(93~768)×10-6,w(Th)为(53~354)×10-6,Th/U值为0.34~0.67(表1),锆石颗粒呈现重稀土元素相对富集,轻稀土元素相对亏损,Eu负异常和Ce正异常显著的球粒陨石标准化配分模式,为岩浆成因锆石(图5)。样品JK302-22的206Pb/238U-207Pb/235U协和年龄为(150.3±0.5)Ma(MSWD=1.18),与加权平均年龄一致(150.2±0.5)Ma(MSWD=0.34)(图6)。
4.2锆石Hf同位素特征JK302-22锆石样品Hf同位素分析结果(表3)显示,锆石初始(176Hf/177Hf)i值为0.282 45~0.282 55,ƒLu/Hf值为-0.98~-0.94,显示出较为均一的特征。计算得出的εHf(t)值为-8.1~-4.6(图7a),二阶段Hf模式年龄值为1.72~1.49 Ga(图7b)。
4.3原位S同位素特征从原位S同位素数据可以看出不同矿物的δ34S值变化范围较宽(表3,图8),其中黄铁矿介于-4.87‰~1.93‰(n=11),黄铜矿介于-3.07‰~4.32‰(n=21)。
动力变质前火山岩沉积阶段黄铁矿(Py-Ⅰ)δ34S值介于-0.16‰~1.11‰,均值为0.57‰(n=5)。动力变质阶段黄铁矿(Py-Ⅱ)δ34S值介于+1.30‰~1.93‰,均值为1.56‰(n=5),黄铜矿(Ccp-Ⅱ)δ34S值介于1.42‰~1.87‰,均值为1.63‰(n=16)。铜矿化阶段,热液隐爆角砾岩中黄铜矿(Ccp-Ⅲ)δ34S值介于3.69‰~4.32‰,均值为4.01‰(n=4)。石英-方解石-硫化物阶段中1个黄铁矿(Py-Ⅳ)样品点δ34S值为-4.87‰,1个黄铜矿(Ccp-Ⅳ)样品点δ34S值为-3.07‰。
5讨 论5.1成岩成矿时代金坑矿床自发现以来,前人围绕锡成矿时代开展了系统的年代学研究工作,Qiu等(2017b)和郭丽荣等(2018)先后对成矿花岗岩和与锡石共生的辉钼矿进行年代学研究,成岩和成矿时代相近,认为成岩成矿关系密切。江丞曜等(2021)开展了锆石和锡石U-Pb年代学研究,进一步限定锡矿成矿时代为144 Ma。考虑到粤东地区早白垩世发育多个锡矿床,如潮安厚婆坳锡多金属矿(145.4 Ma,周新民, 2003),揭西陶锡湖锡矿(~139 Ma, Yan et al., 2017),海丰长埔锡矿(~141.5 Ma,丘增旺等, 2016),海丰塘尾锡矿(~137 Ma,刘鹏等, 2015),惠来西岭锡矿(146~147 Ma, Peng et al., 2018),陆丰仙水沥锡矿(~147 Ma,姚薇等, 2021),陆河塔山锡矿(~138 Ma, Yan et al., 2022)。因此,粤东地区明显存在早白垩世锡矿成矿事件。
一般认为锡与铜具有迥异的地球化学特征,其成矿花岗岩在地球化学和氧逸度特征上均存在显著差别(Lehmann, 1982; Sillitoe, 2010;江丞曜等, 2021)。江丞曜等(2021)提出金坑矿床锡铜共生机制为含锡岩浆热液流体对围岩中Cu、Pb等金属元素的萃取。需要注意的是,粤东地区在160~150 Ma之间存在一期重要的Cu-Mo-Au成矿事件,发育有新寮岽铜矿(~161 Ma,王小雨等, 2016)、钟丘洋铜矿(~164 Ma,Jia et al., 2019)、鸿沟山铜金矿(156 Ma,刘鹏, 2018)、鹅地铜金矿(~169 Ma,刘鹏, 2018)、梅县玉水铜矿(~150 Ma,路远发, 1995)。同时,多个锡多金属矿床的矿石矿物中有大量黄铜矿存在,如金坑矿床矿物组合为黄铜矿+闪锌矿+方铅矿,陶锡湖矿床矿物组合为黄铜矿+闪锌矿+磁黄铁矿,仙水沥矿床闪锌矿+黄铜矿(王晓虎等, 2020)。可见,早于白垩世锡矿成矿事件之前,区域上还存在一期重要的铜矿成矿作用。因此,金坑锡铜多金属矿是同一岩浆热液演化的结果,还是多期成矿事件叠加,需要开展进一步的研究。
表1金坑锡铜矿热液隐爆花岗岩角砾中锆石LA-ICP-MS U-Pb同位素定年结果
Table 1 LA-ICP-MS zircon U-Pb isotopic dating results of hydrothermalcryptoexplosive granite breccia from JinkengSn-Cu deposit
测试点号
Th/10-6
U/10-6
Th
/U
207Pb/206Pb
207Pb/235U
206Pb/238U
207Pb/206Pb
207Pb/235U
206Pb/238U
比值
1σ
比值
1σ
比值
1σ
年龄/Ma
1σ
年龄/Ma
1σ
年龄/Ma
1σ
JK302-22-1
166.9
329.2
0.51
0.050 300
0.003 200
0.1633
0.01
0.023 57
0.000 46
170.0
130.0
152.8
8.7
150.2
2.9
JK302-22-2
146.5
324.7
0.45
0.051 000
0.003 400
0.166
0.011
0.023 65
0.00 047
190.0
140.0
155.4
9.5
150.7
3.0
JK302-22-3
166.5
352.0
0.47
0.050 000
0.002 900
0.1625
0.0093
0.023 56
0.000 45
140.0
120.0
152.1
8.1
150.1
2.8
JK302-22-4
276.0
506.0
0.55
0.048 100
0.002 200
0.1587
0.0076
0.023 62
0.000 42
92.0
97.0
149.0
6.7
150.5
2.6
JK302-22-5
182.5
350.7
0.52
0.049 900
0.002 800
0.1611
0.0089
0.023 37
0.000 45
160.0
120.0
151.2
7.8
148.9
2.8
JK302-22-6
267.4
583.0
0.46
0.047 700
0.002 800
0.1547
0.0094
0.023 38
0.000 44
60.0
120.0
145.5
8.2
149.0
2.8
JK302-22-7
204.3
491.0
0.42
0.049 800
0.003 200
0.164
0.011
0.023 75
0.000 58
160.0
140.0
154.0
9.5
151.3
3.7
JK302-22-8
273.6
727.0
0.38
0.048 900
0.002 000
0.1601
0.0069
0.023 66
0.000 49
125.0
86.0
150.4
6.0
150.7
3.1
JK302-22-9
354.2
768.0
0.46
0.049 000
0.002 600
0.1611
0.0086
0.023 55
0.000 46
130.0
110.0
151.2
7.5
150.1
2.9
JK302-22-10
312.0
673.5
0.46
0.048 600
0.002 400
0.1579
0.0077
0.023 57
0.000 45
104.0
100.0
148.4
6.7
150.2
2.9
JK302-22-11
236.2
391.9
0.60
0.047 500
0.00 2500
0.1542
0.008
0.023 49
0.000 42
50.0
110.0
145.0
7.0
149.7
2.7
JK302-22-12
258.2
753.0
0.34
0.049 800
0.003 000
0.1612
0.01
0.023 37
0.000 46
160.0
130.0
151.4
8.7
148.9
2.9
JK302-22-13
196.5
513.0
0.38
0.047 800
0.001 900
0.1572
0.0065
0.023 61
0.000 39
88.0
81.0
147.8
5.7
150.4
2.5
JK302-22-14
174.2
500.0
0.35
0.049 500
0.003 400
0.161
0.011
0.023 58
0.000 52
140.0
140.0
151.3
9.1
150.2
3.3
JK302-22-15
139.0
281.2
0.49
0.048 400
0.004 000
0.161
0.013
0.023 72
0.000 56
80.0
160.0
150.0
12.0
151.1
3.5
JK302-22-16
350.4
712.0
0.49
0.050 500
0.002 200
0.1641
0.0077
0.023 54
0.000 47
187.0
95.0
153.8
6.7
150.0
2.9
JK302-22-17
216.1
449.1
0.48
0.047 800
0.003 200
0.155
0.011
0.023 54
0.000 51
70.0
140.0
146.0
9.4
150.0
3.2
JK302-22-18
148.6
321.5
0.46
0.050 700
0.002 700
0.1654
0.0087
0.023 78
0.000 44
180.0
110.0
154.8
7.6
151.5
2.8
JK302-22-19
171.0
487.0
0.35
0.049 600
0.003 700
0.163
0.011
0.023 84
0.00 08
150.0
150.0
152.7
9.2
151.9
5.0
JK302-22-20
52.6
92.9
0.57
0.051 400
0.006 400
0.165
0.02
0.023 41
0.000 65
40.0
220.0
151.0
17.0
149.2
4.1
JK302-22-21
248.9
454.5
0.55
0.049 600
0.002 100
0.1602
0.0066
0.023 49
0.000 40
146.0
88.0
150.5
5.8
149.7
2.5
JK302-22-22
309.1
617.0
0.50
0.049 000
0.002 100
0.1575
0.0063
0.023 52
0.000 39
119.0
87.0
148.7
5.7
149.9
2.4
JK302-22-23
196.9
417.0
0.47
0.052 000
0.004 300
0.168
0.013
0.02 366
0.000 56
230.0
170.0
157.0
11.0
150.8
3.5
JK302-22-24
231.0
435.0
0.53
0.050 600
0.002 900
0.1634
0.0092
0.023 66
0.000 45
180.0
120.0
153.1
8.0
150.7
2.8
JK302-22-25
132.0
390.0
0.34
0.047 200
0.004 000
0.153
0.013
0.023 70
0.000 53
30.0
170.0
144.0
11.0
151.0
3.3
JK302-22-26
67.3
160.3
0.42
0.051 800
0.003 300
0.1657
0.01
0.023 51
0.000 48
200.0
130.0
154.5
8.8
149.8
3.0
JK302-22-27
173.4
374.5
0.46
0.04 9800
0.005 300
0.164
0.017
0.024 01
0.000 70
130.0
210.0
154.0
15.0
152.9
4.4
JK302-22-28
219.0
415.3
0.53
0.049 800
0.002 800
0.163
0.0093
0.023 73
0.000 51
160.0
120.0
152.7
8.1
151.2
3.2
JK302-22-29
118.6
339.4
0.35
0.050 900
0.003 300
0.1639
0.01
0.023 57
0.000 47
170.0
130.0
153.3
9.1
150.2
3.0
JK302-22-30
138.2
395.2
0.35
0.049 300
0.004 100
0.161
0.013
0.023 61
0.000 68
120.0
170.0
151.0
11.0
150.4
4.3
JK302-22-31
143.2
300.0
0.48
0.050 000
0.002 800
0.1631
0.0092
0.023 62
0.000 43
140.0
110.0
152.4
8.0
150.5
2.7
JK302-22-32
166.1
425.3
0.39
0.048 000
0.002 500
0.1544
0.0081
0.023 47
0.000 44
87.0
110.0
145.3
7.1
149.6
2.8
JK302-22-33
160.0
239.2
0.67
0.049 200
0.003 000
0.1584
0.0095
0.023 47
0.000 46
110.0
120.0
148.2
8.4
149.5
2.9
JK302-22-34
103.1
158.3
0.65
0.049 700
0.004 800
0.16
0.016
0.023 56
0.000 68
110.0
200.0
150.0
14.0
150.1
4.3
JK302-22-35
176.1
359.0
0.49
0.048 900
0.003 100
0.1602
0.0095
0.023 88
0.000 57
110.0
130.0
150.4
8.3
152.1
3.6
注:比值单位为1。
金坑矿区隐爆角砾岩呈淡肉红色,角砾成分主要为花岗岩碎块,含量在70%以上,角砾大小很不均匀,粒径范围为2~40 mm,形状极不规则,绝大多数为棱角状、次棱角状,少数呈次圆,具有可以拼合的特征。胶结物呈灰黑色,胶结物颗粒细小,根据其颜色以及其光性特征,判断胶结物应以绿泥石、绢云母、石英为主,并有明显铜矿化。岩浆隐爆作用是在地下隐蔽条件下所产生的岩浆爆发作用,隐爆角砾岩是岩浆前锋在近地表封闭条件下发生剧烈爆炸所形成的一套浅成-超浅成(0.5~3.0 km)相碎屑岩建造(喻亨祥等, 1999)。因此,花岗岩角砾的成岩年龄可以大致限定隐爆作用发生的时限。
图4金坑矿区主要矿石特征及不同期次硫化物镜下照片a. 细条带状铜矿矿石;b. 石英-黄铜矿矿脉;c. 热液隐爆角砾岩中花岗质角砾,裂隙内有黄铜矿胶结;d. 沉积黄铁矿,后期受到构造作用的影响破碎成带状;e. 黄铜矿-黄铁矿矿石;f. 呈线状分布黄铜矿颗粒;g. 线状分布黄铜矿;h. 分布于变形虚脱空间的黄铜矿;i. 热液隐爆角砾岩胶结物中黄铜矿颗粒;j. 穿切热液隐爆角砾岩中石英-绿泥石-黄铜矿脉;k. 石英颗粒包裹的黄铜矿;l. 穿切石英-绿泥石-黄铜矿脉的石英-方解石-黄铜矿-黄铁矿细脉
Fig. 4 Ore photographs of Jinkeng mining area and sulfides micrographs from different stages a. Fine banded copper ore; b. Quartz-chalcopyrite veins; c. Hydrothermal cryptoexplosive granitic breccia with chalcopyrite cement in the fissure;d. Sedimentary pyrite broken into bands destroyed by tectonics; e. Chalcopyrite. pyrite ore; f. Linear distributed chalcopyrite; g. Linear distributed chalcopyrite; h. Chalcopyrite distributed in the deformation and collapse space; i. Chalcopyrite in hydrothermal cryptoexplosive breccia cement;j. Quartz-chlorite-chalcopyrite veins cutting hydrothermal cryptoexplosive breccia; k. Chalcopyrite in quartz particles; l. Quartz-calcite-chalcopyrite-pyrite veins cutting quartz-chlorite-chalcopyrite veins
图5锆石阴极发光及测试位置标记
Fig. 5 Zircon cathodeluminescence and testing location markers
本次工作获得金坑矿区隐爆角砾岩中细粒花岗岩角砾的锆石U-Pb年龄为(150.0±0.5)Ma,可以限定隐爆作用发生的时间。细粒花岗岩周边305钻孔于600 m深处揭露到的花岗闪长岩成岩年龄为(150.3±0.5)Ma(作者待发表数据),表明金坑矿区存在晚侏罗世末期岩浆热液活动,并伴随明显的铜多金属矿化。考虑到矿区锡成矿时代为~144 Ma,本文认为金坑矿床至少存在晚侏罗世和早白垩世两期岩浆热液活动,并引发生铜和锡多金属矿成矿事件。
5.2成矿物质来源金坑锡铜多金属矿中不同阶段硫化物显示出一致分馏特征(δ34S黄铜矿>δ34S黄铁矿),表明成矿流体中硫化物间的硫同位素达到了平衡。矿区内未发育硫酸盐矿物,在平衡条件下,金坑矿床黄铁矿的δ34S能够近似代表热液的总硫同位素(δ34S∑S)组成(Ohmoto et al., 1979; Hoefs, 2009)。根据单矿物硫同位素分析结果,朱沛云等(2018)认为金坑矿床矿石中硫来源比较单一,主要为深源岩浆硫。
本次分析结果显示,金坑矿床中不同阶段硫化物的δ34S值变化范围较大(图8)。研究的4个阶段的硫化物在硫同位素上存在着显著的差别。其中,最早期的浸染状矿石中黄铁矿受后期动力变形因素的影响,黄铁矿发生线状破碎,形成线状黄铁矿细碎颗粒条带。原位硫同位素分析结果显示,破碎前(PyⅠ)和变形后(PyⅡ)黄铁矿存在显著的硫同位素变化,前者分布于-0.65‰~+1.11‰,而后者硫同位素值明显增大,分布于+1.30‰~+1.93‰,与PyⅡ共生黄铜矿同位素值为+1.42‰~+1.87‰,变化范围较小。矿相学观察显示,PyⅡ期硫化物展布形态明显受韧性变形控制,均呈线状或细条带状展布,局部可见于压力影中,明显与韧性剪切变形阶段热液活动有关,矿质在局部张性空间沉淀。
图6锆石U-Pb同位素分析结果(a、b)及稀土元素配分图解(c)
Fig. 6 Results of U-Pb isotope analysis of zircon (a, b) and standardized partition diagram of chondrites with rare earth elements (c)
图7金坑及陶锡湖花岗岩锆石ƐHf(t)-t图解(a);和花岗岩锆石二阶段模式年龄图解(b)(金坑花岗岩数据引自Qiu等,2017b;陶锡湖花岗岩数据引自Qiu等, 2017c; JK302-22为本次测试数据)
Fig. 7ƐHf(t)-tdiagram (a) and two-stage model age of the granitic zircon (b) from Jinkeng and Taoxihu mining area (data of Jinkeng from Qiu et al., 2017b; data of Taoxihu from Qiu et al., 2017c; data of JK032-22 from this study)
第三阶段硫化物中黄铜矿δ34SV-CDT值介于+3.69‰~+4.32‰,均值为+4.01‰(n=4)。其中,隐爆角砾岩胶结物中黄铜矿δ34SV-CDT值为+3.69‰~ +3.74‰,略低于石英-绿泥石脉中黄铜矿δ34SV-CDT值(+4.29‰~+4.32‰),可能与前者热液流体同围岩发生过蚀变作用有关,导致围岩硫加入,改变了岩浆中硫同位素原始特征。总体上看,该阶段热液流体明显为岩浆热液来源,并明显高于早期硫化物硫同位素比值。
受后期热液活动的影响,含黄铜矿石英-绿泥石脉状矿石被晚期石英-方解石-黄铜矿-黄铁矿细脉穿切,该期硫化物原位硫同位素明显低于前期热液活动硫同位素值,黄铁矿δ34S值为-4.87‰,黄铜矿δ34S值为-3.07‰。前人研究发现,金坑矿床硫化物的Pb同位素比值与岩体和火山岩地层都较为接近,暗示赋矿围岩也提供了成矿物质,故矿区具有较高Cu、Pb、Zn含量的高基坪组火山岩也可能是铜等成矿物质的来源之一(丘增旺, 2017)。因此,从目前已发现的不同阶段硫化物硫同位素比值可以看出金坑矿床存在复杂的热液叠加演化作用。
表2金坑锡铜矿热液隐爆花岗岩角砾中锆石REE分析结果(w(B)/10-6)
Table 2 LA-ICP-MS zircon REE results(w(B)/10-6)of hydrothermal cryptoexplosive granite breccia from Jinkeng Sn-Cu deposit
测试点号
La
Ce
Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
JK302-22-1
0.03
10.79
0.06
1.51
2.89
0.39
20.90
7.32
93.50
35.66
174.10
35.28
316.60
64.90
JK302-22-2
0.01
9.55
0.04
0.45
1.90
0.29
15.90
6.01
76.00
29.10
143.30
29.10
274.00
54.30
JK302-22-3
0.00
3.63
0.11
1.90
5.25
0.32
28.70
9.79
131.60
50.00
239.00
49.40
433.10
87.70
JK302-22-4
0.74
11.65
0.33
2.98
6.35
0.33
35.20
11.37
144.60
52.70
249.90
49.80
431.00
84.80
JK302-22-5
0.00
12.68
0.03
0.93
2.35
0.26
16.50
5.60
72.10
27.52
132.50
27.07
244.60
49.70
JK302-22-6
0.00
7.23
0.05
0.95
2.96
0.21
19.30
6.63
87.50
33.69
161.90
33.27
296.10
57.50
JK302-22-7
0.00
10.67
0.03
0.64
2.48
0.18
17.30
6.59
81.60
33.30
161.10
34.80
324.00
61.10
JK302-22-8
0.64
8.51
0.34
2.01
2.82
0.14
21.00
7.39
97.70
38.22
193.10
40.62
365.30
73.00
JK302-22-9
0.00
6.81
0.07
1.17
3.01
0.14
24.70
8.00
97.90
37.00
179.70
36.10
322.00
64.30
JK302-22-10
0.00
6.88
0.07
1.51
3.73
0.22
25.10
8.59
113.90
43.20
208.80
42.30
371.60
72.00
JK302-22-11
0.00
9.69
0.21
3.50
6.70
0.87
39.20
12.72
157.30
57.10
266.40
51.90
460.00
91.40
JK302-22-12
0.00
7.78
0.04
0.73
2.12
0.21
16.30
6.87
89.00
35.70
181.60
40.10
367.00
75.80
JK302-22-13
0.00
7.89
0.02
0.58
2.07
0.20
16.40
5.80
80.10
30.60
150.40
32.16
296.90
58.30
JK302-22-14
0.00
5.24
0.03
0.48
2.30
0.10
17.80
6.19
88.10
35.20
165.20
34.40
306.00
60.80
JK302-22-15
0.00
8.81
0.06
1.65
3.39
0.46
19.40
6.28
77.10
28.87
146.00
28.90
264.70
56.00
JK302-22-16
0.02
7.87
0.10
2.44
5.47
0.24
29.20
9.49
112.00
39.60
186.70
36.91
332.20
62.70
JK302-22-17
0.04
10.55
0.08
1.43
4.10
0.31
22.80
8.41
106.30
40.90
196.30
41.80
366.00
71.70
JK302-22-18
21.70
75.20
10.05
47.90
12.50
0.70
22.60
5.91
68.10
23.44
118.30
23.80
208.30
42.80
JK302-22-19
0.00
6.70
0.03
0.57
2.73
0.10
13.70
6.21
76.00
30.70
150.80
32.70
314.00
59.50
JK302-22-20
0.00
4.08
0.02
0.56
1.25
0.40
8.15
2.59
33.00
12.60
64.80
13.90
134.20
30.21
JK302-22-21
0.00
13.94
0.06
1.06
3.08
0.35
19.00
6.51
87.50
33.24
160.80
33.67
304.00
59.00
JK302-22-22
0.95
12.40
0.45
3.60
3.10
0.57
28.00
8.75
113.20
41.40
202.90
40.70
349.00
72.60
JK302-22-23
0.00
9.54
0.08
1.50
4.62
0.40
30.60
10.51
128.00
48.90
229.80
45.90
403.00
77.10
JK302-22-24
0.02
3.21
0.06
1.39
2.94
0.18
22.40
8.21
113.90
43.20
218.70
44.50
413.00
80.00
JK302-22-25
0.00
3.15
0.03
0.67
2.20
0.15
15.60
5.33
67.60
25.13
120.80
25.40
218.80
45.90
JK302-22-26
0.35
11.76
0.25
2.22
4.50
0.43
22.90
7.72
101.60
41.00
198.60
42.00
367.00
76.70
JK302-22-27
0.00
10.90
0.07
1.41
3.90
0.54
22.60
8.15
106.10
41.90
212.60
43.90
405.00
81.60
JK302-22-28
0.00
3.80
0.05
0.87
3.37
0.14
20.70
6.75
89.60
33.90
161.60
33.90
304.50
59.20
JK302-22-29
0.00
4.81
0.03
0.72
2.62
0.07
17.40
6.03
81.60
30.90
151.40
30.50
263.00
56.60
JK302-22-30
0.00
8.83
0.05
1.44
2.78
0.42
17.80
6.07
77.50
29.88
148.80
31.09
288.90
59.30
JK302-22-31
0.00
5.93
0.06
1.42
3.31
0.21
20.90
7.63
98.50
38.74
190.90
39.38
351.20
72.10
JK302-22-32
0.02
3.32
0.30
5.13
8.65
0.85
46.90
14.42
162.50
55.70
245.60
46.40
392.30
74.20
JK302-22-33
0.00
2.34
0.15
3.34
6.42
0.66
35.60
10.85
126.40
42.40
187.50
35.30
298.80
55.30
JK302-22-34
1.56
10.57
0.25
1.60
2.15
0.23
12.00
4.64
60.50
26.20
144.70
33.00
333.00
71.90
JK302-22-35
0.00
12.21
0.06
0.83
2.54
0.31
17.90
6.71
85.70
34.30
169.10
35.50
324.00
63.70
5.3矿床成因本次研究岩石样品的εHf(t)值与晚于铜矿化的锡成矿花岗岩(~140 Ma)基本一致。锆石样品的ƒLu/Hf值为−0.98~−0.94,明显小于镁铁质地壳ƒLu/Hf(-0.34)和硅铝质地壳ƒLu/Hf(-0.72)(Amelin et al., 1999)。样品二阶段模式年龄TDM2更能反映研究岩体岩浆从亏损地幔被抽取的时间或源岩在地壳的平均存留年龄。细粒花岗岩的Hf二阶段模式年龄多数小于华夏板块基底形成年龄(1.8~2.2 Ga),表明岩浆主要来自于中元古代地壳物质,还有地幔物质的加入。徐晓春等(1999)通过对粤东中生代火山-侵入杂岩进行Sr-Nd-Pb同位素组成研究,认为其源岩为未出露、成分不均一的古老陆壳基底岩石,可能为现存幔源火山岩和地壳沉积物混合物或互层。因此,金坑矿床至少存在两期岩浆热液活动的叠加,其中~150 Ma壳幔混合来源花岗质岩浆活动可能是触发矿区铜矿化的重要岩浆事件。
表3金坑锡铜矿热液隐爆花岗岩角砾中锆石Hf同位素分析结果
Table 3 LA-ICP-MS zircon Hf isotope results of hydrothermal cryptoexplosive granite breccia from Jinkeng Sn-Cu deposit
点号
年龄/Ma
176Yb/177Hf
1δ
176Hf/177Hf
1δ
176Lu/177Hf
εHf(0)
εHf(t)
TDM1
TDM2
fLu/Hf
JK302--22-001
150.2
0.282 495
0.000 012
0.282 495
0.000 012
0.000 930 08
-9.8
-6.6
1069
1622
-0.97
JK302--22-002
150.7
0.282 502
0.000 013
0.282 502
0.000 013
0.000 975
-9.6
-6.4
1060
1606
-0.97
JK302--22-003
150.1
0.282 492
0.000 016
0.282 492
0.000 016
0.001 837 07
-9.9
-6.8
1098
1632
-0.94
JK302--22-004
150.5
0.282 500
0.000 016
0.282 500
0.000 016
0.001 511 82
-9.6
-6.5
1078
1612
-0.95
JK302--22-005
148.9
0.282 523
0.000 016
0.282 523
0.000 016
0.000 791 76
-8.8
-5.6
1025
1558
-0.98
JK302--22-006
149.0
0.282 452
0.000 013
0.282 452
0.000 013
0.001 205 91
-11.3
-8.1
1136
1718
-0.96
JK302--22-007
151.3
0.282 493
0.000 012
0.282 493
0.000 012
0.001 084 82
-9.9
-6.7
1076
1626
-0.97
JK302--22-008
150.7
0.282 514
0.000 012
0.282 514
0.000 012
0.001 200 04
-9.1
-5.9
1049
1579
-0.96
JK302--22-009
150.1
0.282 476
0.000 015
0.282 476
0.000 015
0.001 006 08
-10.5
-7.3
1097
1663
-0.97
JK302--22-010
150.2
0.282 542
0.000 014
0.282 542
0.000 014
0.001 731 76
-8.1
-5.0
1025
1521
-0.95
JK302--22-011
149.7
0.282 478
0.000 012
0.282 478
0.000 012
0.001 626 25
-10.4
-7.3
1113
1663
-0.95
JK302--22-012
148.9
0.282 476
0.000 014
0.282 476
0.000 014
0.000 913 77
-10.5
-7.3
1095
1664
-0.97
JK302--22-013
150.4
0.282 487
0.000 015
0.282 487
0.000 015
0.000 958 75
-10.1
-6.9
1080
1639
-0.97
JK302--22-014
150.2
0.282 475
0.000 014
0.282 475
0.000 014
0.001 643 02
-10.5
-7.4
1117
1669
-0.95
JK302--22-017
151.1
0.282 491
0.000 013
0.282 491
0.000 013
0.001 501 7
-9.9
-6.8
1090
1632
-0.95
JK302--22-018
150.0
0.282 554
0.000 013
0.282 554
0.000 013
0.001 493 07
-7.7
-4.6
1000
1491
-0.96
JK302--22-019
150.0
0.282 487
0.000 014
0.282 487
0.000 014
0.001 289 36
-10.1
-6.9
1089
1640
-0.96
JK302--22-020
151.5
0.282 502
0.000 012
0.282 502
0.000 012
0.001 425 71
-9.6
-6.4
1073
1608
-0.96
JK302--22-021
151.9
0.282 511
0.000 014
0.282 511
0.000 014
0.001 186 54
-9.2
-6.0
1053
1586
-0.96
JK302--22-022
149.2
0.282 521
0.000 014
0.282 521
0.000 014
0.000 728 06
-8.9
-5.7
1026
1561
-0.98
JK302--22-023
149.7
0.282 483
0.000 013
0.282 483
0.000 013
0.001 193 62
-10.2
-7.0
1093
1649
-0.96
JK302--22-026
149.9
0.282 508
0.000 013
0.282 508
0.000 013
0.001 289 23
-9.3
-6.2
1061
1594
-0.96
JK302--22-027
150.8
0.282 465
0.000 011
0.282 465
0.000 011
0.001 397 05
-10.8
-7.7
1124
1690
-0.96
JK302--22-028
150.7
0.282 536
0.000 013
0.282 536
0.000 013
0.001 134 92
-8.3
-5.1
1016
1529
-0.97
JK302--22-029
151.0
0.282 499
0.000 012
0.282 499
0.000 012
0.000 853 33
-9.6
-6.4
1060
1610
-0.97
JK302--22-030
149.8
0.282 527
0.000 014
0.282 527
0.000 014
0.001 239 11
-8.7
-5.5
1033
1552
-0.96
JK302--22-031
152.9
0.282 492
0.000 012
0.282 492
0.000 012
0.001 110 03
-9.9
-6.7
1078
1628
-0.97
JK302--22-032
151.2
0.282 522
0.000 015
0.282 522
0.000 015
0.001 506 96
-8.8
-5.7
1047
1563
-0.95
JK302--22-033
150.2
0.282 532
0.000 012
0.282 532
0.000 012
0.000 770 66
-8.5
-5.3
1012
1537
-0.98
JK302--22-034
150.4
0.282 532
0.000 012
0.282 532
0.000 012
0.000 710 56
-8.5
-5.3
1011
1537
-0.98
JK302--22-035
150.5
0.282 451
0.000 011
0.282 451
0.000 011
0.000 803 65
-11.4
-8.1
1127
1719
-0.98
JK302--22-036
149.6
0.282 496
0.000 012
0.282 496
0.000 012
0.000 708 14
-9.8
-6.5
1061
1617
-0.98
JK302--22-037
149.5
0.282 543
0.000 014
0.282 543
0.000 014
0.001 169 06
-8.1
-4.9
1007
1514
-0.96
JK302--22-038
150.1
0.282 525
0.000 015
0.282 525
0.000 015
0.001 564 18
-8.7
-5.6
1044
1557
-0.95
JK302--22-040
152.1
0.282 490
0.000 012
0.282 490
0.000 012
0.001 208 66
-10.0
-6.8
1084
1633
-0.96
注:比值单位为1。
前人对金坑矿区主要硫化物进行了S同位素测试,结果显示其δ34SV-CDT值主要集中在0~4‰(朱沛云等, 2018)。对比粤东地区其他锡矿床中硫化物同位素组成。大道山锡矿块状锡石-硫化物型矿石中黄铁矿和黄铜矿的硫同位素集中于-1.1‰~1.4‰(Qiu et al., 2017a),陶锡湖锡矿脉状锡石-硫化物型矿石中黄铁矿和黄铜矿硫同位素分布集中于0.1‰~2.1‰(Yan et al., 2017),三角窝锡矿脉状锡石-硫化物型矿石中黄铁矿和黄铜矿硫同位素分布集中于-1.6‰~1.0‰(Yan et al., 2018)。可见,金坑矿区硫化物硫同位素组成变化范围明显较大,可能与多期热液活动叠加有关。因此,本文认为金坑矿区铜矿化事件的发生可能与晚侏罗世~150 Ma岩浆事件有关。
表4金坑锡铜矿原位S同位素分析结果
Table 4 In-situ sulfur isotope analysis results of Jinkeng Sn-Cu deposit
序号
样品点号
测试矿物及期次
岩性
δ34Sv-CDT/‰
1
JK302-5-1-01
Py-Ⅰ
构造变形前黄铁矿
-0.16
2
JK302-5-1-02
Py-Ⅰ
0.35
3
JK302-5-1-03
Py-Ⅰ
1.11
4
JK302-5-1-04
Py-Ⅰ
0.68
5
JK302-5-1-05
Py-Ⅰ
0.85
6
JK302-5-1-06
Py-Ⅱ
动力变质阶段黄铁矿
1.93
7
JK302-5-1-07
Py-Ⅱ
1.68
8
JK302-5-1-08
Py-Ⅱ
1.30
9
JK302-6-01
Py-Ⅱ
动力变质阶段共生黄铁矿-黄铜矿
1.57
10
JK302-6-02
Py-Ⅱ
1.32
11
JK302-23-1-02
Py-Ⅳ
切穿引爆角砾岩矿化的石英-方解石-黄铜矿-黄铁矿细脉
-4.87
12
JK302-6-03
Ccp-Ⅱ
共生黄铁矿-黄铜矿
1.19
13
JK302-6-04
Ccp-Ⅱ
1.80
14
JK302-7-1-01
Ccp-Ⅱ
细条带状分布黄铜矿
1.87
15
JK302-7-1-02
Ccp-Ⅱ
1.64
16
JK302-7-1-03
Ccp-Ⅱ
1.66
17
JK302-8-1-01
Ccp-Ⅱ
1.66
18
JK302-8-2-01
Ccp-Ⅱ
1.47
19
JK302-9-1-01
Ccp-Ⅱ
细条带状共生黄铁矿-黄铜矿
1.71
20
JK302-9-1-02
Ccp-Ⅱ
1.57
21
JK302-16-1-01
Ccp-Ⅱ
压力影中顺变形线理分布黄铜矿
1.42
22
JK302-16-1-02
Ccp-Ⅱ
1.42
23
JK302-16-1-03
Ccp-Ⅱ
1.58
24
JK302-19-1-01
Ccp-Ⅱ
细条带状分布黄铁矿-黄铜矿-闪锌矿
1.81
25
JK302-19-1-02
Ccp-Ⅱ
1.76
26
JK302-19-2-01
Ccp-Ⅱ
1.81
27
JK302-19-2-02
Ccp-Ⅱ
1.71
28
JK302-22-3-01
Ccp-Ⅲa
热液隐爆角砾岩石英胶结物中黄铜矿和石英-绿泥石细脉种黄铜矿
3.69
29
JK302-22-3-02
Ccp-Ⅲa
3.74
30
JK302-23-1-02
Ccp-Ⅲb
4.29
31
JK302-23-1-03
Ccp-Ⅲb
4.32
32
JK302-23-1-01
Ccp-Ⅳ
切穿引爆角砾岩矿化的石英-方解石-黄铜矿-黄铁矿细脉
-3.07
最新研究认为东南沿海大陆边缘成矿作用可划分为3期:①中晚侏罗世(170~150 Ma)斑岩Cu-Au/Cu-Mo成矿作用,②早白垩世(145~135 Ma)Sn-W/Sn-Pb-Zn成矿作用,如粤东沿海早白垩世锡钨成矿带,③晚白垩世(120~80 Ma)斑岩-浅成低温热液铜-金多金属矿,不同期成矿事件在空间上互相叠加(刘鹏等, 2021)。其中,中晚侏罗世斑岩Cu-Au/Cu-Mo成矿作用多被认为与古太平洋板块低角度俯冲有关(Mao et al., 2021)。随着Izanagi板块俯冲方向与角度的变化,导致板片断裂拆沉或出现板片窗,引发板内伸展,造成软流圈地幔上涌,玄武质岩浆底侵地壳造成地壳熔融,形成的长英质岩浆后与一定比例地幔物质混合,沿构造带上侵,并形成大量的流纹质岩石和花岗质岩石(江丞曜等, 2021)。在此背景下,金坑矿区~150 Ma花岗质岩浆的侵位,随着侵位高度增加,岩浆出溶流体内压力超过了上覆围岩的抗张强度和静岩压力之和,发生隐爆作用,并有成矿元素的富集成矿,此期硫化物硫同位素组成与早期火山碎屑岩及变质热液阶段硫化物同位素明显较高(3.69‰~4.32‰),指示两者成矿物质来源存在明显差别。考虑到区域铜多金属成矿事件的发生,矿区花岗闪长岩具有较高的Cu含量(江丞曜等, 2021),并且粤东地区发育多个铜多金属矿床(王小雨等, 2016;刘鹏, 2018; Jia et al., 2019),多个锡多金属矿床中也普遍发育黄铜矿(王晓虎等, 2020)。因此,在莲花山断裂带聚焦锡矿找矿的同时,也应重视区内铜多金属矿的调查和勘查,以期实现找矿更大突破。
图8金坑矿区不同阶段硫化物原位S同位分布示意图
Fig. 8 Diagram of in-situ sulfur isotope of sulfides from different stayes in Jinkeng deposit
6结 论金坑锡铜多金属矿位于广东莲花山断裂带北东段,关于该矿床的成因机制一直存在较大争议。笔者在岩芯编录与岩相学观察基础上,通过年代学及硫化物原位硫同位素研究,获得如下认识:
(1) 首次在钻孔中发现热液隐爆角砾岩,角砾岩发育处存在明显的铜富集。热液隐爆角砾岩中细粒花岗岩角砾锆石U-Pb年代学分析结果显示,金坑矿床在~150 Ma发生了铜矿化事件。
(2) 详细划分了金坑矿床热液演化阶段,第一阶段,动力变质前火山沉积阶段,发育沉积黄铁矿,黄铁矿δ34S值为-0.65‰~1.11‰(n=5);第二阶段,成矿前动力变质阶段,形成了石英-黑云母-石榴子石-黄铁矿-黄铜矿-闪锌矿型矿石,黄铁矿δ34S为1.30‰~1.93‰(n=5),与Py-Ⅱ共生黄铜矿δ34S值为1.42‰~1.87‰(n=16);第三阶段,热液隐爆角砾岩发育,形成黄铜矿-石英-绿泥石角砾型矿石,黄铜矿δ34S值为3.69‰~4.32‰(n=4);第四阶段,石英-方解石-硫化物阶段,穿切热液隐爆角砾岩型矿石,黄铁矿δ34S值为-4.87‰(n=1),黄铜矿δ34S值为-3.07‰(n=1)。可见不同成矿阶段硫同位素组成有显著差别。
(3) 金坑矿床至少存在两期岩浆成矿事件和热液活动的叠加,其中~150 Ma壳幔混合来源花岗质岩浆可能是触发矿区铜矿化的重要岩浆事件。
致 谢 野外考察过程中得到了广东省有色金属地质局九三一队朱佩云、刘国炳的大力协助,成文过程中成都理工大学刘永强、中国地质大学(北京)梁琼文协助修绘了部分图件,成都理工大学王虎博士协助完成了实验测试,赵正研究员和秦锦华副研究员为本文的修改提出了宝贵修改意见,在此一并表示真诚谢意!
-
参考文献
Amelin Y, Lee D C, Halliday A N and Pidgeon R T. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399: 1497-1503.
Chen S Q. 2016. Geological characteristics of dynamic metamorphic fractured alteration zone and its relationship with gold mineralization in the Jinkeng gold deposit area, Guangdong[J]. Mineral Exploration, 7(2):291-299(in Chinese with English Abstract).
Fu J, Hu Z, Zhang W, Yang L, Liu Y, Li M, Zong K, Gao S and Hu S. 2016. In situ sulfur isotopes (δ34S and δ33S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS[J]. Analytica Chimica Acta, 91(10): 14-26.
Guo L R, Qian L B, Chen S Q, Zhu P Y and Liao J. 2018. Zircon U-Pb and molybdenite Re-Qs dating and its geological significance of the Jinkeng tin-copper polymetallic deposit, eastern Guangdong[J]. Mineral Exploration, 9(3): 313-323(in Chinese with English Abstract).
Guo R. 2008. Qre-forming geologic background and ore-forming feature of Ag-Cu-Pb-Zn, eastern Guangdong, China[D]. Supervisor: Peng E S and Sun Z J. Changsha: Central South University, 1-104(in Chinese with English Abstract).
Guangdong Bureau of Non-Ferrous Metals Geology No.931. 2015. Survey report of Cu-Sn-Pb-Zn deposits in Jinkeng Mining area, Jiexi County, Guangdong Province [R]. 1-156.
Hoefs J. 2009. Stable isotope geochemistry[J]. Springer Verlag Berlin, Heidelberg, 1-285.
Hu Z, Zhang W, Liu Y, Gao S, Li M, Zong K, Chen H and Hu S. 2015. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis[J]. Analytical Chemistry, 87: 1152-1157.
Jia L, Mao J W and Zheng W. 2019. Geochronology, geochemistry, and Sr-Nd-Hf-O isotopes of the Zhongqiuyang rhyolitic tuff in eastern Guangdong, SE China: Constraints on petrogenesis and tectonic setting[J]. Geological Journal, 55: 5082- 5100.
Jiang C Y, Liu P, Qian L B and Mao J W. 2021. Geochronological framework and coexisting Sn-Cu mineralization of Jinkeng Sn-Cu deposit in eastern Guangdong, China[J]. Acta Petrologica Sinica, 37 (3): 747-768(in Chinese with English Abstract).
Lehmann B. 1982. Metallogeny of tin; magmatic differentiation versus geochemical heritage[J]. Econ. Geol., 77: 50-59.
Liu P, Cheng Y B, Mao J W, Wang X Y, Yao W, Chen X T and Zeng X J. 2015. Zircon U-Pb age and Hf iostopic characteristics of granite from the Tiandong tungsten-Sn polymetallic deposit in eastern Guangdong Provience and its significance[J]. Acta Geologica Sinica, 89(7): 1244-1257(in Chinese with English Abstract).
Liu P. 2018. The W-Sn metallogeny and its geodynamic setting,eastern Guangdong Province, Southeast Coast[D]. Supervisor: Mao J W. Beijing: China University of Geosciences (Beijing). 1-194(in Chinese with English Abstract).
Liu P, Mao J W, Wang L M, Zeng Z L, Bu A, Gao F Y and Xu D K. 2021. Geological characteristics,geodynamic setting of magmatism and metallogeny of Early Cretaceous Sn (W) deposits in southeastern coastal belt of China, and their implication for exploration[J]. Acta Petrologica Sinica, 37(3): 683-697(in Chinese with English Abstract).
Lu Y F. 1995. Geological and geochemical characteristics of Zhongqiuyang subvolcanic copper deposit[J]. Mineral Resources and Geo-logy. 9(3): 145-152(in Chinese with English Abstract).
Mao J W, Liu P and Goldfarb R J, Goryachev N A, Pirajno F, Zheng W, Zhou M, Zhao C, Xie G, Yuan S and Liu M. 2021. Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension, East Asia[J]. Ore Geology Reviews, 136: 104270.
Ohmoto H and Rye R O. 1979. Isotopes of sulfur and carbon, in: Barnes, H.L. (Ed.), Geochemistry of hydrothermal ore deposits[M]. New York: John Wily and Sons. 509-567.
Peng L, Mao J W, Santosh M, Xu L G, Zhang R Q and Jia L H. 2018. The Xiling Sn deposit, eastern Guangdong Province, Southeast China: A new genetic model from 40Ar/39Ar muscovite and U-Pb cassiterite and zircon geochronology[J]. Econ. Geol., 113: 511-530.
Qiu Z W, Wang H, Yan Q H, Li S S, Wang L M, Bu A, Mu S L, Li P and Wei X P. 2016. Zircon U-Pb geochronology and Lu-Hf isotopic composition of quartz porphyry in the Changpu Sn polymetallic deposit, Guangdong Province, SE China and their geological significance[J]. Geochimica, 45: 374-386(in Chinese with English Abstract).
Qiu Z W. 2017. Study on diagenesis and mineralization of Jinkeng tin polymetallic deposit in eastern Guangdong[D]. Supervisor: Wang H. Beijing: University of Chinese Academy of Sciences. 1-143(in Chinese with English Abstract).
Qiu Z W, Li S S, Yan Q H, Wang H, Wei X P, Li P, Wang L M and Bu A. 2017a. Late Jurassic Sn metallogeny in eastern Guangdong, SE China coast: Evidence from geochronology, geochemistry and Sr-Nd-Hf-S isotopes of the Dadaoshan Sn deposit[J]. Ore Geology Reviews, 83: 63-83.
Qiu Z W, Yan Q H, Li S S, Wang H, Tong L X, Zhang R Q, Wei X P, Li P P, Wang L M and Bu A. 2017b. Highly fractionated Early Cretaceous I-type granites and related Sn polymetallic mineralization in the Jinkeng deposit, eastern Guangdong, SE China: Constraints from geochronology, geochemistry, and Hf isotopes[J]. Ore Geology Reviews, 88: 718-738.
Qiu Z W, Wang H, Yan Q H, Li S S, Wang L M, Bu A, Wei Xi P, Li P and Mu S L. 2017c. Zircon U-Pb geochronology, geochemistry and Lu-Hf isotopes of granite porphyry in Taoxihu tin polymetallic deposit, Guangdong Province, SE China and its geological significance[J]. Geotectonica et Metallogenia, 41(3): 516-532(in Chinese with English Abstract).
Qiu Y X, Qiu J S, Li J C and Zhong H P. 1991. Deformational and metamorphic features of Lianhuashan fault zone during Mesocenozoic time and mechanism of their formation[J]. Bulletin of the Institute of Geomechanice Cags, 14:93-106(in Chinese with English Abstract).
Sillitoe R. 2010. Porphyry Copper Systems[J]. Econ. Geol., 105: 3-41.
Wang M L, Pu A, Wang H, Li S S, Chen S Q and Guo L R. 2014. New progress in exploration and prospecting of the integrated exploration area in the southwestern section of the Lianhuashan fault zone in Guangdong Province[J]. Mineral Deposits, S1: 965-966 (in Chinese with English Abstract).
Wang J, Wang L M, Gong F Y, Wang Y, Wang C M, Pu A and Zhu P Y. 2021. Temperature and pressure conditions of dynamic metamorphism with its constraints on polymetallic mineralization of tungsten, tin and copper in Lianhuashan fault zone in Eastern Guangdong Provience[J]. Acta Petrologica Sinica, 37(6): 1921-1932(in Chinese with English Abstract).
Wang X Y, Mao J W, Cheng Y B, Liu P and Zhang X K. 2016. Zircon U-Pb age, geochemistry and Hf isotopic compositions of quartz-diorite from the Xinliaodong Cu polymetallic deposit in easteren Guangdong Province[J]. Geological Bulletin of China, 35(8): 1357-1375(in Chinese with English Abstract).
Wang X H, Zhang W G, Chen Z L, Zhou R D, Chen B L, Xu D K, Huo H L, Li J L, Zhang T, Ding Z L and Li X Z. 2020. Deformation time limit of ore-controlling structures in Lianhuashan fault zone along the South China coast: Constraints from zircon U-Pb age and stratigraphic age[J]. Geology in China, 47(4): 985-997(in Chinese with English Abstract).
Xu X C and Yue S C. 1999. Continental crust anatexite: The genesis of Mesozoic granitic volcanic-intrusive complexes, eastrn Guangdong constrains on Pb-Nd-Sr multi-element isotopic systems[J]. Geological Review, 45(S1): 3-5(in Chinese with English Abstract).
Yan Q H, Li S S, Qiu Z W, Wang H, Wei X P, Pei L, Dong R and Zhang X Y. 2017 Geochronology, geochemistry and Sr-Nd-Hf-S-Pb isotopes of the Early Cretaceous Taoxihu Sn deposit and related granitoids, SE China[J]. Ore Geology Reviews, 89: 350-368.
Yan Q H, Wang H, Qiu Z W, Wei X P, Li P, Dong R, Zhang X Y and Zhou K. 2018. Origin of Early Cretaceous A-type granite and related Sn mineralization in the Sanjiaowo deposit, eastern Guangdong, SE China and its tectonic implication[J]. Ore Geology Reviews, 93: 60-80.
Yan Q H, Wang H, Qiu Z W, Wang M, Mu S L, Wang L M, Bu A, Wang S M, Li S S, Wei X P and Li P. 2018. Zircon and cassiterite U-Pb ages and Lu-Hf isotopic compositions of Tashan tin-bearing porphyry in Guangdong Province, SE China and its geological significance[J]. Geotectonica et Metallogenia, 42(4): 718-731(in Chinese with English Abstract).
Yan Q H, He X H, Tan S C and Wang H. 2022. Genesis of the Tashan porphyry host tin deposit, eastern Guangdong, Southeast China: Constrains from geology, geochronology, and geochemistry[J]. Ore Geology Reviews, 145: 104897.
Yan L M and Qian L B. 2020. Prospecting and prediction of Tin polymetallic depost in the ore-concentrated area in the North of Lianhua Mountain in Guangdong Province[J]. Modern Mining, 36(6): 18-25(in Chinese with English Abstract).
Yao W, Qian L B, Yang H W, Gan L M and Feng B X. 2021. Geological characteristics and geochronology of the Xianshuili Sn-W deposit, eastern Guangdong Province[J]. Acta Petrologica Sinica, 37(3): 733-746.(in Chinese with English Abstract).
Yu H X, Xia B, Lin J B, Liu J Y and Hu C Q. 1999. Magmatic crypto-explosion and its related mineralizationin eastern Junggar orogenic-metallogenic belt, Xinjiang[J]. Geological Review, 45(6): 646-653(in Chinese with English Abstract).
Zhang W, Hu Z C and Liu Y S. 2020. Iso-Compass: New freeware software for isotopic data reduction of LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 35 (6): 1087-1096.
Zhou X M. 2003. My Thinking about granite geneses of South China[J]. Geological Journal of China Universities, 9(4): 556-565(in Chinese with English Abstract).
Zhu P Y, Yan L M, Pu A, Xu D K, Qian L B and Guo L R. 2018. Research on the mineralization geological body in Jinkeng copper-tin-lead-zinc deposit, Guangdong[J]. Mineral Exploration, 9(1): 33-44(in Chinese with English Abstract).
附中文参考文献
陈少青. 2016.广东金坑矿区动力变质构造蚀变带特征与成矿关系[J].矿产勘查, 7(2): 291-299.
广东省有色金属地质局九三一队,2015.广东省揭西县金坑矿区铜锡铅锌矿普查报告[R]. 1-156.
郭丽荣,钱龙兵,陈少青,朱沛云,廖静. 2018.粤东金坑锡铜多金属矿区花岗岩锆石U-Pb年龄和辉钼矿Re-Os年龄及其地质意义[J].矿产勘查, 9(3): 313-323.
郭锐. 2008.粤东成矿地质背景及银铜铅锌成矿特征研究[D].导师:彭恩生,孙振家.长沙:中南大学. 10-104.
江丞曜,刘鹏,钱龙兵,毛景文. 2021.粤东金坑Sn-Cu矿成岩成矿年代学格架与Sn-Cu共生成矿作用[J].岩石学报, 37(3): 747-768.
刘鹏,程彦博,毛景文,王小雨,姚薇,陈叙涛,曾晓剑. 2015.粤东田东钨锡多金属矿床花岗岩锆石U-Pb年龄、Hf同位素特征及其意义[J].地质学报, 89(7): 1244-1257.
刘鹏. 2018.东南沿海粤东地区钨锡成矿作用与成矿动力学背景[D].导师:毛景文.北京:中国地质大学(北京). 1-194.
刘鹏,毛景文,汪礼明,曾载淋,卜安,高凤颖,许典葵. 2021.东南沿海早白垩世锡(钨)矿床地质特征、成岩成矿背景及找矿勘查启示[J].岩石学报, 37(3): 683-697.
路远发. 1995.钟丘洋次火山岩型铜矿床的地质地球化学特征[J].矿产与地质, 9(3): 145-152.
丘增旺,王核,闫庆贺,李莎莎,汪礼明,卜安,慕生禄,李沛,魏小鹏. 2016.广东长埔锡多金属矿床石英斑岩锆石U-Pb年代学、Hf同位素组成及其地质意义[J].地球化学, 45(4): 374-386.
丘增旺,王核,闫庆贺,李莎莎,汪礼明,卜安,魏小鹏,李沛,慕生禄. 2017.广东陶锡湖锡多金属矿床花岗斑岩锆石U-Pb年代学、地球化学、Hf同位素组成及其地质意义[J].大地构造与成矿学, 41(3): 516-532.
丘增旺. 2017.粤东金坑锡多金属矿床成岩成矿作用研究[D].导师:王核.广州:中国科学院大学. 1-143.
邱元禧,邱津松,李建超,钟宏平. 1991.广东莲花山断裂带中、新生代多期复合变形变质带的基本特征及其形成机制的探讨[J].地质力学学报, 14: 93-106.
汪礼明,卜安,王核,李莎莎,陈少青,郭丽荣. 2014.广东莲花山断裂带南西段整装勘查区勘查找矿新进展[J].矿床地质, S1: 965-966.
王军,汪礼明,公凡影,王艳,王成明,卜安,朱沛云. 2021.粤东莲花山断裂带韧性剪切的温压条件及其对钨锡铜多金属成矿作用的约束[J].岩石学报, 37(6): 1921-1932.
王小雨,毛景文,程彦博,刘鹏,张兴康. 2016.粤东新寮岽铜多金属矿区石英闪长岩锆石U-Pb年龄、地球化学及Hf同位素组成[J].地质通报, 35(8): 1357-1375.
王晓虎,张文高,陈正乐,周荣德,陈柏林,许典葵,霍海龙,李季霖,张涛,丁志磊,李效壮. 2020.华南沿海莲花山断裂带控矿构造变形时限:来自锆石U-Pb年龄与地层时代的约束[J].中国地质, 47(4): 985-997.
徐晓春,岳书仓. 1999.粤东中生代火山—侵入杂岩的地壳深熔成因——Pb-Nd-Sr多元同位素体系制约[J].地质论评, 45(S1): 3-5.
闫庆贺,王核,丘增旺,王敏,慕生禄,汪礼明,卜安,王赛蒙,李莎莎,魏小鹏,李沛. 2018.粤东塌山斑岩型锡多金属矿床锆石及锡石U-Pb年代学、Hf同位素组成及其地质意义[J].大地构造与成矿学, 42(4): 718-731.
颜伦明,钱龙兵. 2020.广东莲花山北部矿集区锡多金属矿床找矿预测[J].现代矿业, 36(6): 18-25.
姚薇,钱龙兵,杨瀚文,甘黎明,冯博鑫. 2021.粤东仙水沥Sn-W矿床地质特征及成岩成矿年代学研究[J].岩石学报, 37(3): 733-746.
喻亨祥,夏斌,林锦富,刘家远,胡承琦. 1999.东准噶尔成矿带岩浆隐蔽爆破作用与成矿[J].地质论评, 45(6): 646-653.
周新民. 2003.对华南花岗岩研究的若干思考[J].高校地质学报, 9(4): 556-565.
朱沛云,颜伦明,卜安,许典葵,钱龙兵,郭丽荣. 2018.广东金坑铜锡铅锌矿床成矿地质体研究[J].矿产勘查, 9(1): 33-44.
摘要
金坑锡铜多金属矿位于广东莲花山断裂带北东段,是近些年来在粤东地区新发现的典型锡铜多金属矿,关于该矿床的成因类型和成矿机制一直存在较大争议。矿区勘查工作在马山矿段首次发现伴有明显铜矿化的热液隐爆角砾岩,对于揭示矿床成因具有重要意义。LA-ICP-MS锆石U-Pb年代分析结果显示,花岗质角砾成岩年龄约为150 Ma,εHf(t)值为-8.20~-4.55,二阶段Hf模式年龄值为1.73~1.49 Ga,指示岩浆主要来自于中元古代地壳物质,并有地幔物质加入。硫化物原位硫同位素分析结果显示,不同阶段硫化物硫同位素组成具有明显差别。第一阶段(Py-Ⅰ)和第二阶段(Py-Ⅱ)黄铁矿存在显著的硫同位素变化,前者为-0.65‰~1.11‰(n=5),后者为1.30‰~1.93‰(n=5),与Py-Ⅱ共生黄铜矿同位素值为1.42‰~1.87‰(n=16)。第三阶段硫化物中黄铜矿δ34S值为3.69‰~4.32‰(n=4),其中隐爆角砾岩胶结物中黄铜矿(Ccp-Ⅲa)δ34S为3.69‰~3.74‰,略低于第三阶段石英-绿泥石脉中黄铜矿(Ccp-Ⅲb)δ34S值(4.29‰~4.32‰)。第四阶段黄铁矿(Py-Ⅳ)δ34S值为-4.87‰(n=1),黄铜矿(Ccp-Ⅳ)δ34S值为-3.07‰(n=1)。基于成岩成矿年代及硫化物原位硫同位素分析,文章认为金坑锡铜多金属矿床可能存在两期岩浆热液活动的叠加,其中~150 Ma壳幔混合来源花岗质岩浆活动可能是触发矿区铜矿化的重要岩浆事件,早于后期锡矿的形成(~144 Ma),这一发现有望为莲花山断裂带锡铜多金属矿指引新的方向。
Abstract
The Jinkeng Sn-Cu polymetallic deposit is located in northeastern part of the Lianhuashan fault in Guangdong Province. It has long been hotly debated about its genesis. Hydrothermal cryptoexplosive breccia is first discovered in Mashan ore section of Jinkeng Sn-Cu polymetallic deposit by core logging and petrographic observation, and the hydrothermal activity can be divided into 5 stages in detail. On this basis, this paper carried out detailed zircon U-Pb dating of granitic breccia in hydrothermal cryptoexplosive breccia, and detailed in-situ sulfur isotope analysis of sulfide. The granite have zircon U-Pb age about 150 Ma, have εHf(t) values ranging from−8.20 to−4.55, and Hf model ages (TDM2) of 1.72~1.49 Ga, suggesting that the granite formed by the partial melting of Mesproterozoic crustal material, and contain a minor mantle-derived component. In-situ sulfur isotope analysis of sulfides show that there are obvious differencesed in sulfur isotopic composition of sulfides from different stages. Significantly, the sulfur isotope changes in pyrite of different stages before crushing (Py-Ⅰ:-0.65‰ to 1.11‰,n=5) and after deformation (Py-Ⅱ: 1.30‰ to 1.93‰,n=5), and the δ34S of chalcopyrite associated with Py-Ⅱis 1.42‰ to 1.87‰ (n=16). Chalcopyrite in the third stage have high δ34S values ranging from 3.69‰ to 4.32‰ (n=4), in which the δ34S value of chalcopyrite in cryptoexplosive breccia cement (Ccp-Ⅲa: 3.69‰ to 3.74‰), which is slightly lower than that in quartz-chlorite vein (Ccp-Ⅲb: 4.29‰ to 4.32‰). The pyrite from the fourth stage have lower δ34S value (Py-Ⅳ:-4.87‰,n=1; Ccp-Ⅳ:-3.07‰,n=1). Considering that the tin deposits in Jinkeng and its adjacent area are mainly formed in ~144 Ma, while the copper deposit is formed in 170~150 Ma. It is considered that there are at least two magmatic and hydrothermal events in Jinkeng deposit, in which the granitic magmatic activity derived from crust-mantle mixing of ~150 Ma may be an important magmatic event to trigger Cu mineralization in the mining area. This work could hopefully promote the Sn and Cu prospecting along Lianhuashan fault belt.