编号:0258-7106(2016)06-1169-21

中扬子地区江汉盆地古新统沙市组物源

—来自碎屑锆石 U-Pb 年代学及地球化学证据*

余小灿¹,刘成林^{2**},王春连²,徐海明²,孟令阳³,蔡 睿³

(1 中国地质大学地球科学与资源学院,地质过程与矿产资源国家重点实验室,北京 100083;2 中国地质科学院矿产资源 研究所国土资源部成矿作用与资源评价重点实验室,北京 100037;3 长江大学地球科学学院,湖北武汉 430100)

摘 要 文章利用 LA-ICP-MS 分析技术,对江汉盆地西南缘古新统沙市组碎屑岩进行了碎屑锆石的 U-Pb 年 代学研究,获得该区沙市组时期碎屑物源的重要信息。97 组协和年龄数据产生了 12 个年龄峰值,分别为 2500 Ma、 1870 Ma、995 Ma、850 Ma、708~775 Ma、603~640 Ma、505~553 Ma、408~458 Ma、356 Ma、300 Ma、235 Ma 和 172 Ma。锆石的年龄峰值主要集中于古元古代、新元古代和早古生代,这些年龄峰值与黄陵隆起和江南造山带中的锆石 年龄相同。早中生代年龄峰值也较明显,该年龄通常和大别山的高压和超高压变质岩有关,江南造山带也发育印支 期花岗岩。结合该时期岩相古地理特征,认为沙市组主要物源来自黄陵隆起以及扬子板块与大别造山带之间的碰 撞带,而南部江南造山带的贡献是次要的。黄陵隆起花岗岩含钾量高,其风化可以给盆地带来丰富的成钾物源。 关键词 地球化学, U-Pb 年代学,碎屑锆石,物源, 古新统,江汉盆地

中图分类号:P619.211 文献标志码:A

Provenance of Paleocene Shashi Formation in Jianghan Basin of Middle Yangtze area: Evidence from U-Pb geochronology and geochemistry of detrital zircons

YU XiaoCan¹, LIU ChengLin², WANG ChunLian², XU HaiMing², MENG LingYang³ and CAI PengRui³ (1 China University of Geosciences, School of Earth Sciences and Resources, State Key Laboratory of Geological Processes and Mineral Resources, Beijing 100083, China; 2 MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 3 School of Geosciences, Yangtze University,

Wuhan 430100, Hubei, China)

Abstract

Using the U-Pb LA-ICP-MS analysis technique the authors analyzed geochronological features of detrital zircons from Paleocene clastic rock of Shashi Formation in southwestern Jianghan basin. Significant clastic source information was obtained. The 97 groups of U-Pb age yielded 12 peak ages: 2500 Ma, 1870 Ma, 995 Ma, 850 Ma, 708~775 Ma, 603~640 Ma, 505~553 Ma, 408~458 Ma, 356 Ma, 300 Ma, 235 Ma and 172 Ma. The ages are concentrated in three epochs: Paleoproterozoic, Neoproterozoic and Early Paleozoic. The peak ages are consistent with the zircon ages in Huangling dome and Jiangnan orogen. Predominant Early Paleozoic peak ages are usually related to high- and ultrahigh- pressure metamorphic rocks in Dabie orogen, and Indosinian granites

**通讯作者 刘成林,男,1963年生,研究员,主要从事沉积矿床研究工作。Email:liuchengl@263.net

收稿日期 2016-08-15; 改回日期 2016-09-15。秦思婷编辑。

^{*} 本文得到 973 项目(编号:2011CB403007),中央级公益性科研院所基本科研业务费专项(编号:K1415),中国地质大调查项目(编号: 12120114051901)和国家自然科学基金青年基金(编号:41502089)联合资助

第一作者简介 余小灿,男,1988年生,博士研究生,岩石学、矿物学、矿床学专业。Email:xiaocany1988@163.com

are also developed in Jiangnan orogen. In conjunction with lithofacies paleogeography in this period, the provenance of Shashi formation might have mainly been derived from Huangling dome and the collision belt between Yangtze Block and Dabie Orogen, with the Jiangnan Orogen to the south playing the subordinate role. Granites in Huangling dome are rich in potassium, and granite weathering could provide the basin with abundant source of potassium.

Key words: geochemistry, U-Pb geochronology, detrital zircon, provenance, Paleocene, Jianghan Basin

江汉盆地是中新生代发展起来的断陷盆地。大 地构造单元上位于扬子板块中部,地处秦岭-大别造 山带南缘、江南造山带北缘和黄陵隆起东缘。前人 对江汉盆地古新统沙市组研究主要集中在沉积环 境、古气候、岩相古地理以及油气资源等方面(李俊, 2009 刘中戎等 2009 ;王春连等 ,2013a ;2013b ;余小 灿等,2014;Yu et al.,2015),而对其物源的研究较 少 徐政语等(2005)依据盆地内的碎屑组分分析认 为,古近纪时期盆地物源主要由北部秦岭-大别造山 带提供,而南部的江南造山带则处于从属、次要地 位。然而,目前对于古新统沙市组碎屑物源及其聚 集机制仍然不清楚。盆地碎屑沉积物是研究盆山关 系的桥梁 ,可用于描述沉积源区的特征 ,甚至古地理 的重建(Roser et al., 1986;Sircombe, 1999;闫义等, 2002 Weltje et al. ,2004)。各种分析测试技术被用 于沉积物源的研究,由于在碎屑沉积物中,碎屑锆石 🗅 分布广泛且在沉积分异过程中能够保持稳定等特 点 碎屑锆石年代学被广泛用于限定地层时代、示踪 沉积源区、反演地貌演化等方面的研究(Fedo et al., 1996 :陆松年等 ,2006 ;Wu et al., ,2007 ;杨宗永等 , 2012 Ershoval et al. 2015)。基于以上方法理论,本 文对江汉盆地西南缘古新统沙市组地层进行碎屑锆 石年代学研究 以分析其源区特征。

1 地质背景

江汉盆地是一个叠置在中扬子板块上的白垩纪 —古近纪含油气断陷盆地,被一系列北北东向的正 断层控制。江陵凹陷是该盆地最大的一个次级凹 陷,位于其西南缘。该凹陷内沉积了较完整的白垩 系—古近系,厚度近万米,发育新沟嘴组含油岩系。 古新统沙市组总体为一套滨浅湖碎屑岩和盐湖沉 积,发育河流、三角洲和滨浅湖-半深湖砂岩和泥岩 以及盐湖沉积的蒸发岩(刘丽军等,2003;王春连等, 2012,尤英等,2013)。该盆地被大别造山带(东北) 江南造山带(南)和黄陵隆起(西北)图1)包围,这些

可能成为古新统沙市组沉积物的潜在源区。

大别造山带形成于三叠纪,扬子板块向北俯冲 于华北板块下部,主要由北部的淮阳构造岩浆带、核 部变质杂岩带(NDC)和南部高压(HP),超高压 (UHP) 变质带组成(Grimmer et al., 2003; Li et al., 2005 ;Liu et al. ,2013)。北部淮阳构造单元主要由 低级变质岩组成 ,伴有少量角闪岩相岩石 ,被白垩纪 岩体侵入(Okay et al., 1993)。核部杂岩体主要由灰 色片麻岩和次一级的混合岩、角闪岩、麻粒岩和大理 岩组成 Wang et al. 2005)。南部高压、超高压变质 带主要由片麻岩及少量角闪岩、含石榴子石橄榄岩、 硬玉石英岩和大理岩组成(Liu et al., 2013)。江南 造山带主要由新元古代冷家溪群和板溪群组成 ,两 者以角度不整合接触(Wang et al.,2007;2009)。冷 家溪群主要由砂岩、板岩、细碧岩和火山碎屑岩组 成 板溪群主要由杂砂岩、板岩和绿片岩序列组成。 这些基底序列被晋宁期、加里东期、印支期和燕山期 的花岗岩所侵入。黄陵隆起是一个北东东向的背 斜 基底出露背斜的核部 ,由新太古代—古元古代的 崆岭群和黄陵花岗岩侵入体(740~850 Ma)组成(马 国干等,1984;Li et al.,2003;Zheng et al.,2004; Zhang et al. 2006b) 盖层由震旦系—三叠系海相地 层组成(沈传波等,2009)。 崆岭群中最老的岩石年 龄为 3218~3300 Ma(Jiao et al. ,2009 ;Gao et al. , 2011)。黄陵隆起前寒武纪基底序列产生的碎屑锆 石 U-Pb 年龄峰值为 2870~3280 Ma、2500 Ma、1900 \sim 2050 Ma、1800 Ma 和 720 \sim 910 Ma(Qiu et al., 2000 Zhang et al. 2006a 2006b Liu et al. 2008)

2 样品采集及测试方法

本次研究样品采自江汉盆地西南缘 SKD1 井古 新统沙市组 岩性为粉砂岩(A21、A34 和 A61),深度 分别为~1486.9 m、~2048.1 m 和~2298.4 m(图 2)。样品中锆石的分选采用传统的比重和磁性方法 进行淘选,并在双目显微镜下对获取的重矿物进行

图 1 江汉盆地地质简图及周缘构造单元(据 Liu et al. 2013)

T₃—下三叠统沉积物;J₂—中侏罗统沉积物;K₁—下白垩统沉积物;K₂—上白垩统沉积物;E—古近系沉积物;F1—信阳-舒城断裂 (商单缝合带在大别造山带北缘的延伸部分);F2—襄广断裂(勉略缝合带在大别山南缘的延伸部分);NDC—北大别山核部变质杂岩体; UHP—超高压变质带;HP—高压变质带

Fig. 1 Schematic map showing the Jianghan Basin and neighboring tectonic units (after Liu et al., 2013) T₃—Lower Triassic sediments; J₂—Middle Jurassic sediments; K₁—Lower Cretaceous sediments; K₂—Upper Cretaceous sediments; E—Paleogene sediments; F₁—Xinyang-Shucheng fault; F2—Xiangfan-Guangji fault, which buried the Mianlue suture; NDC—North Dabie core complex zone; UHP—Ultrahigh-pressure metamorphic unit; HP—High-pressure metamorphic unit

人工挑纯。将挑选的锆石颗粒用环氧树脂进行固 定,对固结后的样品台进行表面抛光,并进行阴极发 光照相,以观察各锆石颗粒内部的核、边和包裹体结 构以用于进行锆石原位 U-Pb 同位素分析时选择测 量点的依据。锆石U-Pb同位素年龄采用激光剥蚀 等离子体质谱(LA-ICPMS)原位分析方法,在西北大 学大陆动力学国家重点实验室完成。激光剥蚀系统 为 GeoLas 200M 配置 193 nm 的 ArF 准分子激光器, 测量系统为 Agilent 7500a ICP-MS。测量时采用的激 光斑束为 30 µm,测量过程包括~30 s 的背景信号采

集和~80 s 的样品信号采集。原始数据应用软件 GLITTER4.0处理,详细的分析和数据处理流程见 Yuan等(2004)。协和图和年龄直方图绘制采用软 件 ISOPLOT ver 4.15 完成(Ludwig,2012)。通常中 生代及更年轻的锆石中²⁰⁷Pb 含量太少,难以准确测 定,因此,年轻锆石选用²⁰⁶Pb/²³⁸U 年龄为锆石形成 年龄,锆石年龄大于 1000 Ma 的选用²⁰⁶Pb/²⁰⁷Pb 为 锆石的形成年龄(Wang et al.,2007)。

3 碎屑锆石特征及 U-Pb 同位素结果

本次 U-Pb 同位素年龄研究获得 97 颗协和度在 90%~110%之间的碎屑锆石。锆石阴极发光图显 示样品锆石大小不等,呈次棱柱状和浑圆状,反映它 们经过一定距离的搬运与磨蚀。部分锆石具较自形 的晶形,表明它们为近源搬运。锆石颗粒的长度变 化于 20~125 μ m,平均 60~70 μ m。多数锆石阴极 发光图亮度较弱,展示了 2 种主要的结构特征(图 3):一种是暗色核部和亮色宽边组成,反映了后期构 造热事件的影响;另一种显示了振荡环带,表明了典 型的岩浆成因锆石。此外,少量锆石具有很窄的亮 边,表明了后期的生长(Zhang et al., 2006a)。 w(Th)为 3×10⁻⁶~534.61×10⁻⁶, w(U)为 33× 10⁻⁶~1317.15×10⁻⁶, Th/U比值多大于 0.1,变化 范围 0.03~1.54(图 4)。只有 5 个点的值小于 0.1, 可能来源于变质岩。

对锆石进行年代学的分析,表 1 列出了样品中碎屑锆石 Th、U 元素含量和表面年龄的计算结果,获得表面年龄范围为 126~2560 Ma(图 5)。最年轻的 2 颗锆石年龄为(126±2) Ma 和(150±3) Ma,3 个太古代年龄分别为(2560±51) Ma、(2503±51) Ma和(2543±52) Ma。在年龄谱图(图 6)中,主要存在 12 个年龄峰值,分别为 2500 Ma、1870 Ma、995 Ma、850 Ma、708~775 Ma、603~640 Ma、505~564 Ma、408~458 Ma、356 Ma、300 Ma、235 Ma 和 172 Ma。 各年龄峰值所占颗粒数及含量见表 2。

图 3 江汉盆地沙市组碎屑锆石典型 CL 图像特征 Fig. 3 Cathodoluminescence images of representative detrial zircon grains of Shashi Formation in Jianghan Basin

1粉砂岩碎屑锆石 LA-ICP-MSU-Pb 测年结果
沙市组粉码
表 1

Formation
Shashi
Ë.
siltstone
of
results
dating
U-Pb
zircon
detrital
LA-ICP-MS
Table 1

Pb/ ²³⁸ U 浅煮/6 ²⁰⁷ Pb/ ²⁰⁶ Pb 浅煮/6 ²⁰⁷ P /12155 0.00181 802 79 79 79 /12155 0.00181 802 79 79 79 79 /130688 0.00467 2049 54 1 1 72 1 /14705 0.00538 2457 50 54 1 1 /11876 0.00244 1094 72 1 1 72 1 /11876 0.00203 1165 60 1 75 2 2 /11876 0.00157 812 65 1 75 2 /11876 0.00203 1165 60 1 75 2 /11876 0.00053 315 85 55 1 1 /11879 0.00053 315 85 54 1 1 /11889 0.00053 1160 71 75 1 1 1	同位素比值
(12155 0.00181 802 79 79 (130688 0.00408 1762 56 1 (133661 0.00457 2049 54 1 (11752 0.00538 2457 50 2 (116523 0.00244 1094 72 1 (11876 0.00157 812 65 1 (11876 0.00157 812 65 1 (11876 0.00157 812 65 1 (11876 0.00157 812 65 1 (11876 0.00157 812 65 1 (153794 0.00053 1165 60 1 (153794 0.00053 315 85 54 1 (153794 0.00053 470 71 75 1 (14751 0.00053 470 71 75 1 (14892 0.00194 951 62 1 1 (114892	⁷ Pb/ ²³⁵ U 误差/σ ²⁰⁶ Pb/ ²
130688 0.00408 1762 56 1 0.33661 0.00457 2049 54 1 0.41705 0.00244 1094 54 1 0.41705 0.00238 2457 50 2 0.116523 0.00244 1094 72 1 0.7091 0.00024 579 69 2 0.11876 0.00157 812 65 1 0.55737 0.00053 315 85 1 0.57337 0.00053 315 85 1 0.57337 0.00053 315 85 1 0.4751 0.00053 315 85 1 0.4751 0.00053 470 71 75 0.14892 0.00194 951 60 1 0.14892 0.00194 931 62 1 0.1488 0.00228 470 71 1 0.14892 0.00194 9312 88	10407 0.02999 0.121
133661 0.00457 2049 54 1 141705 0.00538 2457 50 24 116523 0.00244 1094 72 1 116523 0.00244 1094 72 1 11876 0.00157 812 65 1 15439 0.00203 1165 60 1 15439 0.00053 315 85 5 15537 0.00078 471 75 5 05737 0.00053 315 85 5 1 05737 0.00053 315 85 5 1 05737 0.00053 315 85 5 1 032689 0.00041 322 100 71 5 1 014751 0.00053 470 71 75 5 1 032689 0.00194 951 60 1 1 032686 0.00194 951 60	56026 0.06736 0.306
1,1705 0.00538 2457 50 2 1,16523 0.00244 1094 72 1 1,07091 0.000244 579 69 4 1,1876 0.00157 812 65 4 1,1657 0.00157 812 65 1 1,5439 0.00203 1165 60 1 1,5439 0.00203 1165 60 1 1,5439 0.00053 315 85 5 0,5737 0.00053 315 85 5 0,4751 0.00063 470 71 75 0,4751 0.00063 470 71 75 0,4751 0.00063 470 71 75 0,14892 0.00194 951 62 100 0,14892 0.00194 9312 88 100 0,114892 0.00045 421 90 90 0,114892 0.00053 312 88 100 0,11483 0.000545 421 90 90	86938 0.09076 0.336
1.16523 0.00244 1094 72 1 0.7091 0.00094 579 69 6 1.11876 0.00157 812 65 6 1.5439 0.00203 1165 60 1 1.5439 0.00203 1165 60 1 1.5439 0.000783 315 85 5 0.5737 0.00078 471 75 5 0.32916 0.0428 1850 54 1 0.4751 0.00063 470 71 7 0.04751 0.00063 470 71 7 0.14892 0.00194 951 62 1 0.14892 0.00194 931 62 1 0.1488 0.00228 1075 60 1 0.117588 0.00039 312 88 0 0.117589 0.00167 401 123 0 0.11488 0.00136 401 123 0 0.12589 0.00167 811 64 0 <td>20972 0.12061 0.417</td>	20972 0.12061 0.417
0.07091 0.00094 579 69 1.11876 0.00157 812 65 1.5439 0.00203 1165 60 1 0.03794 0.00053 315 85 5 0.05737 0.00053 315 85 5 0.05737 0.000428 471 75 0.05737 0.000428 1850 54 1 0.04751 0.00063 470 71 75 0.04751 0.00063 470 71 75 0.14892 0.00194 951 62 1 0.14892 0.00194 951 62 1 0.14892 0.00194 951 62 1 0.14892 0.00194 951 62 1 0.114892 0.00194 951 62 1 0.114892 0.00194 9312 88 1 0.033066 0.000228 1075 60 1 0.03435 0.00050 401 123 90 0.03435 0.000167 811 64 0.12889 0.00167 811 64	73059 0.04211 0.165
1.11876 0.00157 812 65 1.5439 0.00203 1165 60 1 0.3794 0.00053 315 85 5 0.3737 0.00078 471 75 5 0.32916 0.00428 1850 54 1 0.4751 0.0063 470 71 7 0.4751 0.0063 470 71 7 0.4751 0.00041 322 100 0.14892 0.00194 951 62 0.17588 0.00228 1075 60 1 0.33066 0.00045 421 90 0.33056 0.00045 421 90 0.33066 0.00045 421 90 0.33056 0.00050 401 123 0.33056 0.00136 711 69 0.10148 0.00136 711 69 0.12889 0.00167 811 64	58012 0.00991 0.070
1,5439 0.00203 1165 60 1 7,03794 0.00053 315 85 5 1,05737 0.00078 471 75 5 1,05737 0.000428 1850 54 1 1,04751 0.00063 470 71 7 1,04751 0.00063 470 71 7 1,14892 0.00041 322 100 1 1,14892 0.00194 951 62 1 1,14892 0.00194 951 62 1 1,14892 0.00194 951 62 1 1,14892 0.00194 951 62 1 1,14892 0.00194 931 60 1 1,17588 0.00045 421 90 90 1,03435 0.00050 312 88 1 123 1,0148 0.00167 811 69 1 1 1,12389 0.00167 811 64 90 1	08413 0.01790 0.118
(03794 0.00053 315 85 55 0.5737 0.00078 471 75 75 0.32916 0.00428 1850 54 1 0.4751 0.00063 470 71 75 0.02689 0.00041 322 100 71 0.14892 0.00194 951 62 1 0.17588 0.00228 1075 60 1 0.17583 0.00228 1075 60 1 0.33066 0.00045 421 90 123 0.33056 0.00039 312 88 123 0.3312 0.00039 312 88 123 0.3435 0.00050 401 123 123 0.10148 0.00136 312 88 11 69 0.12889 0.00167 811 64 123 11	67615 0.02517 0.154
()5737 ()0078 471 75 ()32916 ()00428 1850 54 1 ()4751 ()0063 470 71 7 ()14892 ()00194 951 62 100 ()14892 ()00194 951 62 1 ()14892 ()00194 951 62 1 ()17588 ()00228 1075 60 1 ()33066 ()00045 421 90 312 ()33435 ()00060 401 123 ()3435 ()00167 811 69	27568 0.00743 0.037
132916 0.00428 1850 54 1 104751 0.00063 470 71 71 102689 0.00041 322 100 114892 0.00194 951 62 117588 0.00228 1075 60 1 0.17588 0.00228 1075 60 1 0.17588 0.0023 312 88 90 0.03066 0.00039 312 88 90 0.03435 0.00060 401 123 0.12889 0.00136 711 69 0.12889 0.00167 811 64	44702 0.00926 0.057
0.04751 0.00063 470 71 322 0.02689 0.00041 322 100 0.14892 0.00194 951 62 0.17588 0.00228 1075 60 1 0.17588 0.00228 1075 60 1 0.03066 0.00045 421 90 312 0.03435 0.00060 401 123 90 0.03435 0.00167 811 69 1	13358 0.07011 0.329
1,02689 0.00041 322 100 1,14892 0.00194 951 62 1,17588 0.00228 1075 60 1 0,03066 0.00045 421 90 31 0,03136 0.00039 312 88 31 0,03435 0.00060 401 123 90 0,10148 0.00136 711 69 1 0,12889 0.00167 811 64 1	36988 0.00664 0.047
0.114892 0.00194 951 62 6 0.17588 0.00228 1075 60 1 0.033066 0.00045 421 90 5 0.02713 0.00039 312 88 5 0.03435 0.00060 401 123 0.03435 0.00136 711 69 0.12889 0.00167 811 64	19597 0.00701 0.026
1,17588 0.00228 1075 60 1 0,03066 0.00045 421 90 5 0,02713 0.00039 312 88 0,023435 0.00060 401 123 0,10148 0.00136 711 69 0,12889 0.00167 811 64	45323 0.02103 0.148
0.03066 0.00045 421 90 0.02713 0.00039 312 88 0.03435 0.00060 401 123 0.10148 0.00136 711 69 0.12889 0.00167 811 64	82474 0.02558 0.175
0.02713 0.00039 312 88 0.03435 0.00060 401 123 0.10148 0.00136 711 69 0.12889 0.00167 811 64	23352 0.00719 0.030
0.03435 0.00060 401 123 0.10148 0.00136 711 69 6 0.12889 0.00167 811 64 6	19685 0.00568 0.027
0.10148 0.00136 711 69 6 0.12889 0.00167 811 64 1	25925 0.01282 0.034
0.12889 0.00167 811 64 7	88261 0.01623 0.101
	17516 0.01950 0.128
0.29693 0.00432 1740 59 1	35840 0.08598 0.296

) 仓			宗 小)	加等	• 中	物于	一地区	×Ц	汉益	地亡	1 新ミ	カシリ	巾狙	初馮	*: オ	く目れ	竿 俏 "	暗石	U-F	b平	·代字	- 汉王	也求	化学1
表 1-2	ole 1-2		协和度/%	101	103	107	107	104	102	102	100	106	103	101	100	103	103	101	101	107	104	102	102	100
续	inued Tat		误差/σ	11	30	21	24	9	8	22	25	18	10	10	21	9	24	25	22	19	11	12	21	22
	Cont		²⁰⁶ Pb/ ²³⁸ U	548	2465	1771	2017	416	346	1858	2215	1212	497	775	1746	440	1133	833	1868	1525	746	863	1842	1891
		∳/Ma	误差/σ	25	15	13	14	12	25	13	13	20	26	12	14	11	37	52	12	13	17	15	12	13
		表面年齢	²⁰⁷ Pb/ ²³⁵ U	552	2509	1830	2093	435	352	1879	2217	1237	511	785	1748	455	1144	845	1876	1570	772	880	1857	1895
			误差/σ	136	52	56	53	93	192	55	52	74	146	73	57	86	116	188	55	58	86	75	54	55
			²⁰⁷ Pb/ ²⁰⁶ Pb	568	2543	1897	2167	532	389	1903	2218	1280	574	814	1751	529	1166	874	1885	1631	848	922	1874	1900
				0.00183	0.00672	0.00432	0.00501	0.00103	0.00137	0.00448	0.00547	0.00329	0.00173	0.00182	0.00424	0.00104	0.00447	0.00440	0.00448	0.00367	0.00195	0.00212	0.00436	0.00456
			²⁰⁶ Pb/ ²³⁸ U	0.08875	0.46574	0.31607	0.36735	0.06669	0.05520	0.33398	0.40990	0.20676	0.08021	0.12777	0.31102	0.07058	0.19211	0.13795	0.33620	0.26694	0.12263	0.14331	0.33067	0.34086
			误差/σ	0.04203	0.17967	0.07984	0.10443	0.01790	0.03523	0.07925	0.11240	0.06525	0.04160	0.02650	0.07536	0.01622	0.11369	0.11838	0.07709	0.06161	0.03628	0.03506	0.07240	0.07989
		同位素比值	⁰⁷ Pb/ ²³⁵ U	0.72252	10.82983	5.06316	6.85250	0.53415	0.41442	5.36565	7.87340	2.38041	0.65483	1.16743	4.59511	0.56460	2.08616	1.29728	5.34540	3.69529	1.13874	1.37924	5.22703	5.46639
			误差/σ ²	.00384	0.00535	.00366	.00422	0.00254	.00494	.00362	.00429	0.00324	0.00415	0.00236	0.00341	0.00232	0.00482	0.00656	0.00357	0.00322	0.00285	0.00262	0.00352	0.00361
			Pb/ ²⁰⁶ Pb	.05902 (.16856 (.11613 (.13523 (.05806	.05443 (.11647 (.13926	.08347	.05920	.06625	.10712	.05800	.07874	.06819	.11530	.10039	.06734	.06979	.11464	.11631
			/U	8 0	9 6	7 0	17 0	74 0	3 0	8	12 0	57 C	73 C	96 C	38 C)3 C	36 C	00	99	68	96 (73 (58	17 0
			н Ц	<u>53 0.6</u>	54 0.6	53 0.1	88 0.4	92 0.7	9.0 61	89 0.1	93 0.4	85 O.E	94 0.7	59 0.6	18 0.3	33 0.0	3.0 65	25 0.5	38 0.6	70 0.8	81 0.6	0.0 60	80 0.2	50 0.ì
		(B)/10 ⁻⁶		3 272.0	171.4	418.:	156.) 516.9	99.4	496.8	233.5	117.3) 167.5	211.	1 275.	708	51.5	3 127.	311.	2 219.	2 190.	136.	5 682.3	308.
			Th	185.68	119.14	70.16	72.97	383.20	3.00	90.48	99.14	78.68	122.65	139.85	103.74	21.49	44.30	114.13	206.75	195.02	125.42	99.40	189.95	53.91
		样品号及分	析点号	A34.07	A34.09	A34.11	A34.12	A34.15	A34.17	A34.18	A34.21	A34.29	A34.32	A34.34	A34.35	A34.36	A34.42	A34.48	A34.52	A34.54	A34.55	A34.57	A34.61	A34.63

1175

1176	

样品号及分	γ W(B)	//10-6				同位素	比值					表面年龄	/Ma			
析点号	Th	n	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	误差/σ	²⁰⁷ Pb/ ²³⁵ U	误差/σ	²⁰⁶ Pb/ ²³⁸ U	误差/σ	²⁰⁷ Pb/ ²⁰⁶ Pb	误差/σ	²⁰⁷ Pb/ ²³⁵ U	误差/σ	²⁰⁶ Pb/ ²³⁸ U	误差/σ	阶和度/%
A34.70	335.93	218.61	1.54	0.07563	0.00252	1.79635	0.03374	0.17227	0.00239	1085	65	1044	12	1025	13	106
A34.74	248.49	357.15	0.70	0.06975	0.00279	1.34909	0.03888	0.14028	0.00217	921	80	867	17	846	12	102
A34.77	153.27	464.44	0.33	0.07330	0.00285	1.28307	0.03501	0.12697	0.00193	1022	77	838	16	771	11	109
A34.81	103.83	187.26	0.55	0.05537	0.00381	0.36943	0.02289	0.04839	0.00097	427	147	319	17	305	9	105
A34.82	189.90	407.56	0.47	0.06974	0.00247	1.02612	0.02272	0.10672	0.00151	921	71	717	11	654	6	110
A61.08	366.01	1317.15	0.28	0.05531	0.00204	0.26409	0.00630	0.03462	0.00047	424	80	238	5	219	3	108
A61.15	266.92	484.59	0.55	0.05777	0.00246	0.53353	0.01694	0.06697	0.00100	521	91	434	11	418	9	104
A61.18	180.42	249.95	0.72	0.06621	0.00222	1.06073	0.01983	0.11616	0.00156	813	69	734	10	708	6	104
A61.20	444.19	543.36	0.82	0.05564	0.00227	0.28417	0.00840	0.03703	0.00053	438	88	254	7	234	Э	108
A61.27	55.78	88.45	0.63	0.07157	0.00234	1.59254	0.02782	0.16135	0.00216	974	65	967	11	964	12	100
A61.28	152.01	123.03	1.24	0.05881	0.00304	0.68079	0.02926	0.08393	0.00143	560	109	527	18	520	6	101
A61.29	44.13	33.84	1.30	0.06577	0.00274	1.15272	0.03556	0.12709	0.00193	662	85	677	17	171	Π	101
A61.30	54.76	56.64	0.97	0.17022	0.00529	11.06963	0.16056	0.47155	0.00633	2560	51	2529	14	2490	28	102
A61.33	348.35	463.33	0.75	0.06596	0.00255	0.92827	0.02494	0.10205	0.00150	805	79	667	13	626	6	106
A61.36	128.32	200.81	0.64	0.16457	0.00504	10.89910	0.14796	0.48021	0.00626	2503	51	2515	13	2528	27	66
A61.37	206.11	765.34	0.27	0.05445	0.00196	0.28925	0.00666	0.03852	0.00053	390	78	258	5	244	ŝ	106
A61.41	229.13	312.88	0.73	0.06999	0.00226	1.11060	0.01871	0.11506	0.00153	928	65	759	6	702	6	108
A61.42	223.49	594.77	0.38	0.05914	0.00183	0.66452	0.00948	0.08148	0.00105	572	66	517	9	505	9	102
A61.43	307.66	472.08	0.65	0.06901	0.00214	0.99590	0.01429	0.10464	0.00136	899	63	702	7	642	8	109
A61.49	106.92	295.61	0.36	0.07332	0.00226	1.68525	0.02367	0.16667	0.00216	1023	61	1003	6	994	12	101
A61.54	64.75	626.33	0.10	0.07136	0.00229	1.24101	0.02076	0.12610	0.00168	968	64	819	6	766	10	107

1-4	1-4
续表	Table

第35卷 第

6 期	余小灿等:	中扬子地区江汉盆地古新统沙市组物源:	来自碎屑锆石 U-Pb 年代学及地球化学证据	1177

														Contin	ued Tabl	e 14
样品号及分	. W(B	4)/10-6				同位素比值						表面年龄//	Ma			
析点号	Th	n	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	误差/0	²⁰⁷ Pb/ ²³⁵ U	误差/σ	²⁰⁶ Pb/ ²³⁸ U	误差/σ	²⁰⁷ Pb/ ²⁰⁶ Pb	误差/σ	²⁰⁷ Pb/ ²³⁵ U	误差/σ	²⁰⁶ Pb/ ²³⁸ U	误差/σ	协利度/%
A61.55	17.52	562.92	0.03	0.05254	0.00191	0.26894	0.00637	0.03711	0.00051	309	81	242	5	235	n	103
A61.56	287.06	654.70	0.44	0.05805	0.00191	0.52336	0.00946	0.06537	0.00087	531	71	427	9	408	5	105
A61.58	517.16	631.32	0.82	0.05948	0.00203	0.59840	0.01218	0.07295	0.00099	585	73	476	8	454	9	105
A61.59	100.81	931.70	0.11	0.06888	0.00214	0.99184	0.01456	0.10442	0.00136	895	63	700	7	640	8	109
A61.62	187.55	367.23	0.51	0.06240	0.00205	0.65176	0.01187	0.07575	0.00101	688	69	510	7	471	9	108
A61.63	177.26	567.23	0.31	0.06627	0.00210	0.89959	0.01440	0.09844	0.00130	815	65	652	8	605	8	108
A61.66	151.10	478.57	0.32	0.07014	0.00214	1.35718	0.01874	0.14032	0.00182	932	61	871	8	847	10	103
A61.73	192.55	539.27	0.36	0.07507	0.00244	1.72388	0.03073	0.16652	0.00226	1070	64	1018	Π	993	12	102
A61.74	283.81	431.98	0.66	0.05340	0.00207	0.26848	0.00731	0.03646	0.00052	346	85	242	9	231	Э	105
A61.76	47.75	386.41	0.12	0.11150	0.00344	4.83755	0.07141	0.31463	0.00419	1824	55	1792	12	1763	21	103
A61.78	80.41	140.86	0.57	0.05232	0.00319	0.17015	0.00914	0.02358	0.00041	300	133	160	8	150	3	106
A61.86	242.56	639.69	0.38	0.05556	0.00185	0.29077	0.00559	0.03795	0.00051	434	72	259	4	240	3	108
A61.88	211.78	408.72	0.52	0.05750	0.00202	0.51635	0.01151	0.06512	0.00090	510	76	423	8	407	5	104

图 4 江汉盆地沙市组砂岩样品的碎屑锆石 Th/U比值 Fig. 4 Plots of Th/U ratios versus U-Pb ages of detrial zircon grains in sandstones from the Shashi Formation of Jianghan Basin

表 2 江汉盆地沙市组中不同年龄峰值的锆石数目 Table 2 Numbers of zircons of different age peaks in the Shashi Formation of Jianghan Basin

Shashi	1 of mation of Jiang	nan Dasm
年龄峰值/Ma	颗粒数/个	锆石含量/%
2500	5	17.50
1870	12	17.50
995	5	
850	7	22
708~775	12	32
603~640	7	
505~553	6	10 (0
408 - 458	12	18.60
356	6	0.20
300	3	9.30
235	8	12 40
172	4	12.40
		0

4 碎屑锆石稀土元素地球化学特征

江汉盆地古新统沙市组样品的稀土元素,采用 Boyntor(1984)推荐的球粒陨石标准值对其进行标 准化,各样品稀土元素化学参数及其配分模式图分 别见表 3 和图 7。江汉盆地古新统沉积岩 \sum REE 分 布范围为(54.4713 ~ 2787.4700 µg/g), LREE、 HREE 元素含量的比值在一定程度上反映了样品 LREE、HREE 的分异状况,这一数值越大,表明 LREE 富集,HREE 亏损。样品的 LREE/HREE 为 0.0071~0.3425 表明 HREE 相对富集。(La/Yb)_A 是稀土元素球粒陨石标准化图解中分布曲线的斜 率 反映了曲线的倾斜程度。样品的(La/Yb)_A 为 0.000 028~0.134 626 ,表明样品的轻、重稀土元素 分异较大。样品 Eu 负异常变化大, \deltaEu 为 0.05~ 0.99。 δCe为1.09~262.80, 铈正异常明显。

一般而言,典型的未蚀变岩浆锆石的稀土元素 配分模式变现为亏损 LREE,富集 HREE,正 Ce 异 常,负 Eu 异常;典型的变质锆石稀土元素配分模式 特征为正 Ce 异常,负 Eu 异常,HREE 相对平坦;典 型热液锆石特征为 LREE 平坦,HREE 富集,负 Eu 异常(Belousova et al. 2002,雷玮琰等,2013)。由图 7 可以看出 轻稀土元素亏损、重稀土元素富集,呈现 左倾模式。Eu 处出现适度的"谷"状负 Eu 异常, "峰"状正 Ce 异常。La 至 Eu 段轻稀土元素配分曲 线较为平坦、斜率较小, 轻稀土元素之间的分馏程度 较低,Gd 至 Lu 段重稀土元素配分曲线斜率较大,说 明重稀土元素配分模式, 个别锆石稀土元素配分 模式显示正 Ce 异常,负 Eu 异常,但 HREE 相对平 坦,符合变质锆石的稀土元素配分模式(图 7)。

5 碎屑锆石物源分析

古新世时期,江汉盆地内断裂活动较弱,主要发 育北北东向的张性正断层,盆底面积不断扩大,并发 展为一个相对统一的广盆,整个盆地的沉降中心在 西南部的江陵凹陷。在盆地的北-西北部发育冲积 扇相及三角洲相沉积,东部发育三角洲平原和三角 洲前缘沉积,而盆地西南部仅发育少量的三角洲相 沉积(李俊,2009)。可见该时期盆地总体呈现北东 高、南西低的构造格局,碎屑物源主要来自北部、东 向。因此,江汉盆地古新世时期主要有西北和东北2 个源区,而盆地西南向的物源是次要的。

从样品中的锆石年龄分析可知,锆石的年龄峰 值主要集中于3个年龄段,分别为古元古代的2500 Ma和1870 Ma两个峰值年龄;新元古代,其年龄峰 值为995 Ma、850 Ma、708~775 Ma和603~640 Ma;早古生代,其年龄峰值为505~553 Ma和408~ 458 Ma。并有一些晚古生代和中生代的年龄段,其 中印支期的年龄较明显。宽泛变化的碎屑锆石年 龄以及不同的年龄峰值表明了碎屑物源的多样性。 同时,多样的锆石形貌特征也支持了这一结论(图 2)。

2500 Ma 和 1870 Ma 两个峰值年龄较明显,共 占据了所有锆石的 17.5%。这 2 个峰值年龄在华北 板块和扬子板块均出现,Liu 等(2008)分析了 2 个板 块的碎屑锆石特征,认为峰值年龄 2500 Ma 在华北

图 5 江汉盆地沙市组碎屑锆石样品锆石 U-Pb 年龄谐和图

Fig. 5 Concordia plots of detrital zircon U-Pb analytical results in the Shashi Formation of Jianghan Basin

板块明显,而1870 Ma峰值年龄在扬子板块明显,表 明了这些碎屑锆石可能来自于扬子板块。2550~ 2400 Ma和2050~1800 Ma锆石年龄组在黄陵隆起 的莲沱组、孤城组和南沱组中获得(Liu et al., 2008),这些年龄组和崆岭地体中片麻岩和变质沉积 岩的U-Pb年龄(Qiu et al.,2000),角闪岩和副片麻 岩的全岩 Sm-Nd等时线年龄(Ling et al. 2001)以及 混合岩的锆石年龄(Zhang et al. 2006b)相同。相似 的碎屑锆石年龄也能从江南造山带基底沉积序列中 获得(Wang et al.,2007)。同时,年龄约为1850 Ma 的圈椅 花岗岩(袁海华等,1991)侵入到崆岭地体 之中,也可提供1800 Ma峰值年龄锆石的物源。因 此,黄陵隆起可能是古元古代碎屑锆石的主要源区, 可能有少量来自江南造山带。

新元古代时期伴随罗迪亚超大陆的聚合和裂解,华南克拉通出现大量的岩浆活动(Zhou et al., 2002;Li et al., 2003;Zheng, 2003;Zheng et al., 2007;Wu et al., 2006)。研究区新元古代碎屑锆石

占据了总数量的 32%,可见该时期的碎屑锆石作为 主要锆石来源。黄陵花岗岩侵入崆岭地体位于莲沱 组之下,锆石 U-Pb 年龄为 740~850 Ma(Li et al., 2003 Zheng,2003;Zheng et al.,2004),且在晚白垩 世时期遭受剥蚀(沈传波等,2009;Shen et al., 2012)。相似年龄组也可以在江南造山带和黄陵隆 起获得(Wang et al.,2007;Liu et al.,2008;Yao et al. 2013)。同时,在 800~1000 Ma 期间,沿着扬子 克拉通的北缘出现钙碱性的侵入体(Shi et al., 1990 Gao et al.,1990)。可见,江南造山带和黄陵隆 起都可能是新元古代碎屑锆石的源区,可能有少量 来自扬子板块北缘同期的火山岩。

古新世时期江汉盆地主要有西北和东北 2 个源 区,而黄陵隆起和大别造山带分别位于其西北缘和 东北缘,则古元古代和新元古代碎屑锆石应来自黄 陵隆起。同时,印支期的锆石年龄峰值(235 Ma)也 是较明显的,该时期常常和大别山的高压和超高压变 质岩有关(Ratschbacher et al. 2000 Grimmer et al. 2003;

1 1																								
Nith And Na And Na And Na And Na And Na Na <	ÂĈe	22	9.08	5.72	36.92	52.02	4.30	19.64	10.81	20.86	11.86	10.31	4.01	31.88	11.09	6.01	213.86	51.57	23.91	39.47	216.99	12.33	3.97	39.32
NT NT<	ÅF.	OLU	0.29	0.17	0.78	0.10	0.33	0.24	0.34	0.76	0.40	0.30	0.24	0.37	0.15	0.06	0.53	0.34	0.48	0.75	0.51	0.15	0.68	0.65
ME ME<	(I a/Vh).		0.000039	0.000958	0.000660	0.000043	0.000162	0.000067	0.000219	0.001668	0.001085	0.001559	0.005531	0.000197	0.000175	0.000370	0.000033	0.000211	0.000764	0.000935	0.000028	0.000088	0.005907	0.001164
$\# \pi$ $\mu \pi \pi$ $\mu \pi$ $\mu \pi \pi$ $\mu \pi$ $\mu \pi \pi \pi$ $\mu \pi \pi$ $\mu \pi \pi \pi \pi$ $\mu \pi \pi \pi \pi \pi$ $\mu \pi \pi \pi \pi \pi$	LREE/	HREE	0.0082	0.0309	0.1536	0.0201	0.0227	0.0174	0.0307	0.0929	0.0433	0.1156	0.0568	0.0433	0.0162	0.0510	0.0731	0.0368	0.0670	0.1469	0.0359	0.0143	0.0852	0.1350
	HRFF		817.670	679.160	135.920	833.070	1050.450	1114.950	191.200	304.500	1019.600	410.000	1734.920	1253.800	719.870	282.340	793.900	1060.120	587.180	97.320	941.970	1674.290	624.500	330.159
	IRFF		6.7449	20.9700	20.8750	16.7815	23.8200	19.3600	5.8740	28.2850	44.1640	47.4010	98.5500	54.3190	11.6730	14.4060	58.0421	38.9780	39.3490	14.3010	33.7797	23.8850	53.2270	44.5620
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RFF		824.4149	700.1300	156.7950	849.8515	1074.2700	1134.3100	197.0740	332.7850	1063.7640	457.4010	1833.4700	1308.1190	731.5430	296.7460	851.9421	1099.0980	626.5290	111.6210	975.7497	1698.1750	677.7270	374.7210
M/K La Ce Pr Nd Sin Eu Gd Tb Dy Ho Fr Tn Yb M/K La Ce Pr Nd Sin Eu Gd Tb Dy Ho Fr Tn Yb Λ/K La Ce Pr Nd Sin Eu Gd Tb Dy Ho Fr Tn Yb $\Lambda/100$ 00209 1920 0112 12.90 8080 10574 4010 18192 3782 35690 $\Lambda/111$ 00235 11430 0119 1710 3250 0249 3542 1415 1415 1416 141		Lu	65.82	51.46	10.31	65.95	70.52	90.03	12.95	34.23	81.46	24.14	113.90	95.85	52.38	60.6	77.04	109.44	64.30	5.92	90.44	118.05	58.35	39.81
Mit Indext Index Index Index		Чþ	356.90	285.11	61.29	370.76	417.24	491.30	77.06	146.76	450.37	145.26	687.45	537.75	307.89	76.46	375.31	537.4P	291.10	37.51	448.78	701.56	301.30	174.86
Micl $Micl Micl $		Tm	37.82	30.05	5.08	38.58	44.81	51.37	7.41	12.69	45.37	15.74	78.78	56.56	32.61	8.43	35.32	48.53	26.36	3.96	42.91	78.40	27.37	14.09
<		Er	181.92	149.57	24.03	186.61	233.24	242.94	34.90	54.60	214.32	84.73	407.88	266.33	158.36	50.81	152.11	207.91	111.88	18.58	190.02	394.17	117.56	54.24
(#17) (MB) <		Но	40.10	34.53	5.98	41.45	57.64	54.52	9.28	11.51	48.87	22.44	97.42	61.91	36.98	17.34	33.67	40.42	22.18	5.27	40.13	91.70	25.52	10.72
指力 (B)10 ⁶ (位) La Ce Pr Nd Sm Eu Gd Tb 人口 Ce Pr Nd Sm Eu Gd Tb 人口 Ce Pr Nd Sm Eu Gd Tb 人口 0.405 10.230 0.457 4.320 2.790 0.710 21.29 8.00 人口 0.405 10.230 0.475 1.560 2.340 1.020 8.180 人口 0.0235 11.430 0.119 1.710 3.250 0.249 4.783 1.940 人口 0.0235 11.430 0.119 1.710 3.250 0.249 4.050 5.940 人口 0.0356 2.320 0.182 1.410 2.010 2.780 2.280 1.940 人口 0.3360 21.570 0.793 1.920 2.540 5.540 人口 0.3350 21.870 0.453 2.390 1.934 </td <td></td> <td>Dy</td> <td>105.74</td> <td>96.40</td> <td>20.49</td> <td>102.56</td> <td>166.31</td> <td>141.43</td> <td>33.55</td> <td>32.14</td> <td>134.62</td> <td>75.22</td> <td>265.33</td> <td>174.97</td> <td>103.28</td> <td>74.71</td> <td>88.07</td> <td>94.20</td> <td>54.45</td> <td>17.91</td> <td><i>71</i>.66</td> <td>228.57</td> <td>70.71</td> <td>27.22</td>		Dy	105.74	96.40	20.49	102.56	166.31	141.43	33.55	32.14	134.62	75.22	265.33	174.97	103.28	74.71	88.07	94.20	54.45	17.91	<i>71</i> .66	228.57	70.71	27.22
補石 如 横石 La Cc Pr Nd Sm Eu Gd A21.02 0.0209 1.920 0.124 1.270 2.700 0.710 2.129 A21.05 0.4030 15.720 0.175 1.560 2.340 1020 5.88 A21.01 0.0203 114.30 0.119 1.710 3.250 0.249 9.94 A21.11 0.0230 15.720 0.175 1.560 2.340 1020 6.88 A21.14 0.1000 4.790 0.719 1.710 3.250 9.94 9.34 A21.15 0.0490 8830 0.239 3.410 5.790 1040 31.42 A21.13 0.0500 15.720 0.18 1.140 2.010 9.73 A21.30 0.7153 0.3360 1.740 2.500 1.47.8 A21.31 0.7230 21.470 2.570 44.67 A21.33 0.3360 1.740 2.500	3)/10 ⁻⁶	Tb	8.080	8.120	1.860	7.820	15.910	11.940	4.050	2.840	11.690	8.500	22.850	15.760	8.310	9.600	7.830	7.130	4.640	1.810	7.950	18.340	6.090	2.369
損石点位LaCePrNdSmEu点位LaCePrNdSmEuA21.020.02091.9200.1241.2702.7000.710A21.010.660015.7200.1751.5602.3401.020A21.110.023511.4300.1191.7103.2500.249A21.110.023511.4300.1191.7103.2500.249A21.140.10004.7900.7206.2209.7602.230A21.150.04908.8300.2393.4102.7000.544A21.150.04908.8300.2393.4102.7000.544A21.130.02502.0700.7826.2201.9201.920A21.300.72502.7300.7330.33502.23801.4402.010A21.310.02502.37300.4695.7301.9202.200A21.320.35302.15700.7322.7301.920A21.330.35302.15700.7492.5001.9201.920A21.330.35302.15700.7495.7301.9202.520A21.440.08006.0302.3801.4531.9202.520A21.430.16813.4100.1692.7302.220A21.440.09001.9200.1932.4140.7940.760A21.440.09100.7422.6402.7302.430 </td <td>Ŋм</td> <td>Gd</td> <td>21.29</td> <td>23.92</td> <td>6.88</td> <td>19.34</td> <td>44.78</td> <td>31.42</td> <td>12.00</td> <td>9.73</td> <td>32.90</td> <td>33.97</td> <td>61.31</td> <td>44.67</td> <td>20.06</td> <td>35.90</td> <td>24.55</td> <td>15.08</td> <td>12.27</td> <td>6.36</td> <td>21.97</td> <td>43.50</td> <td>17.60</td> <td>6.85</td>	Ŋм	Gd	21.29	23.92	6.88	19.34	44.78	31.42	12.00	9.73	32.90	33.97	61.31	44.67	20.06	35.90	24.55	15.08	12.27	6.36	21.97	43.50	17.60	6.85
掛石点位LaCePrNdSm点位LaCePrNdSmA21.050.02091.9200.1241.2702.700A21.050.405015.7200.1751.5602.340A21.010.060015.7200.1751.5602.340A21.110.023511.4300.1191.7103.250A21.130.04008.8300.7206.2209.760A21.140.10004.7900.7206.2209.760A21.130.035311.4300.1191.7103.250A21.140.10004.7900.7236.2209.760A21.130.035302.07700.88300.2393.4102.010A21.330.335602.07700.0851.1402.010A21.340.157028.7300.4695.2307.030A21.350.0253021.5700.4695.2307.030A21.360.157028.7300.4695.2307.030A21.360.157028.7300.4695.2307.030A21.410.052021.5700.4695.2307.030A21.430.168033.2100.1495.3002.400A21.440.06802.26002.15700.1953.410A21.450.05802.15800.1951.45301.860A21.470.052010.5100.1952.41402.160A21.53 </td <td></td> <td>Eu</td> <td>0.710</td> <td>0.598</td> <td>1.020</td> <td>0.249</td> <td>2.230</td> <td>1.042</td> <td>0.544</td> <td>1.220</td> <td>1.980</td> <td>1.950</td> <td>2.200</td> <td>2.520</td> <td>0.399</td> <td>0.329</td> <td>2.020</td> <td>0.767</td> <td>1.230</td> <td>0.840</td> <td>1.452</td> <td>0.940</td> <td>2.360</td> <td>0.829</td>		Eu	0.710	0.598	1.020	0.249	2.230	1.042	0.544	1.220	1.980	1.950	2.200	2.520	0.399	0.329	2.020	0.767	1.230	0.840	1.452	0.940	2.360	0.829
指行LaCePrNd点位LaCePrNd人口0.02091.9200.1241.270人口0.02091.9200.1751.560人口0.060015.7200.1751.560人口0.060015.7200.1751.560人口0.060015.7200.1751.560人口0.023511.4300.1191.710人口0.023511.4300.1751.560人口0.02302.0700.7236.220人口0.02302.0700.7851.400人口0.02302.0700.7851.400人口0.02302.0700.4695.230人口0.02302.0700.4695.230人口0.02302.0700.4695.230人口0.02302.15700.4695.230人口0.02302.15700.4695.230人口0.02302.15700.4695.230人口0.02302.15700.4695.230人口0.02302.15700.4695.230人口0.02302.15700.4695.230人口0.02302.15700.4695.230人口0.02302.15700.4695.230人口0.02302.15700.4695.230人口0.02302.15700.4697.530人口0.02302.2600.1930.469人口0.02302.560 <t< td=""><td></td><td>Sm</td><td>2.700</td><td>4.960</td><td>2.340</td><td>3.250</td><td>9.760</td><td>5.790</td><td>2.010</td><td>2.500</td><td>7.030</td><td>11.800</td><td>12.770</td><td>9.670</td><td>3.320</td><td>7.940</td><td>5.430</td><td>3.110</td><td>4.910</td><td>1.860</td><td>3.470</td><td>8.180</td><td>6.470</td><td>2.210</td></t<>		Sm	2.700	4.960	2.340	3.250	9.760	5.790	2.010	2.500	7.030	11.800	12.770	9.670	3.320	7.940	5.430	3.110	4.910	1.860	3.470	8.180	6.470	2.210
指行 La Ce Pr 点位 La Ce Pr A21.05 0.4050 1.920 0.124 A21.05 0.4050 1.920 0.175 A21.07 0.0600 15.720 0.175 A21.11 0.0203 11.430 0.119 A21.14 0.1000 4.790 0.720 A21.15 0.04050 15.720 0.175 A21.14 0.1000 4.790 0.720 A21.15 0.04050 15.720 0.175 A21.14 0.1000 4.790 0.720 A21.15 0.0450 2.8730 0.469 A21.30 0.7255 2.8730 0.469 A21.31 0.0250 2.1570 0.469 A21.33 0.33360 21.570 0.469 A21.41 0.0450 2.380 0.469 A21.42 0.0480 3.3210 0.469 A21.43 0.1680 3.3210 0.469 A21		рŊ	1.270	4.320	1.560	1.710	6.220	3.410	1.140	1.740	5.230	10.990	14.530	6.640	1.630	3.640	2.000	1.580	3.010	0.960	1.410	4.140	9.310	1.790
指元 点位 上の 二、 二、 二、 二、 二、 二、 二、 二、 二、 二、		Pr	0.124	0.457	0.175	0.119	0.720	0.239	0.085	0.182	0.469	0.755	2.380	0.442	0.214	0.195	0.164	0.143	0.269	0.079	0.049	0.423	1.347	0.191
指括 点位 上a 人之1.02 A21.02 A21.02 A21.02 A21.07 A21.07 A21.11 0.0255 A21.14 0.1000 A21.14 0.1000 A21.35 A21.35 A21.36 A21.36 A21.36 A21.36 A21.38 0.1570 A21.41 0.0420 A21.41 0.0420 A21.43 0.1680 A21.47 0.0800 A21.47 0.0520 A21.57 0.0189 A21.57 0.0189 A21.57 0.0189 A21.57 0.0189 A21.57 0.0189 A21.57 0.0520 0.0520 0.0520 0.0520 0.0500 0.052		Ce	1.920	10.230	15.720	11.430	4.790	8.830	2.070	22.280	28.730	21.570	61.030	34.890	6.030	2.260	48.410	33.210	29.600	10.510	27.380	10.110	31.100	39.240
+ 計五 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		La	0.0209	0.4050	0.0600	0.0235	0.1000	0.0490	0.0250	0.3630	0.7250	0.3360	5.6400	0.1570	0.0800	0.0420	0.0181	0.1680	0.3300	0.0520	0.0189	0.0920	2.6400	0.3020
	锆石	点位	A21.02	A21.05	A21.07	A21.11	A21.14	A21.15	A21.22	A21.24	A21.30	A21.33	A21.36	A21.38	A21.40	A21.41	A21.42	A21.43	A21.46	A21.47	A21.50	A21.53	A21.54	A21.55

表 3 沙市组粉砂岩碎屑锆石稀土元素数据

Table 3 Detrital zircon REE data of siltstone in Shashi Formation

1180

2016 年

3-1	δCe	3.48	4.74	12.95	26.81	2.93	4.61	23.09	9.52	3.83	4.02	1.50	18.28	15.64	37.70	3.07	7.82	5.57	5.90	62.07	23.00	126.70	6.85
able	δEu	0.54	0.70	0.15	0.55	0.80	0.45	0.47	0.45	0.13	0.24	0.18	0.31	0.64	0.17	0.29	0.15	0.31	0.58	0.59	0.27	0.26	0.18
	(La/Yb) _N	0.000388	0.001303	0.000568	0.000379	0.005597	0.000588	0.000409	0.000448	0.000183	0.000181	0.010742	0.001672	0.001695	0.000043	0.000594	0.000228	0.000252	0.007199	0.000052	0.000158	0.000078	0.000059
LREE/	HREE	0.0155	0.0575	0.0251	0.0603	0.0572	0.0198	0.0541	0.0234	0.0197	0.0131	0.0607	0.0673	0.1179	0.0202	0.0205	0.0268	0.0138	0.1810	0.0350	0.0363	0.0460	0.0142
	HREE	2494.470	1041.610	940.200	776.750	2636.710	1109.850	459.190	1460.170	871.020	1877.020	819.100	758.290	130.310	1020.430	854.320	424.800	1030.820	272.600	2449.340	1025.590	330.740	896.660
	38.7200	59.8550	23.6420	46.8050	150.7600	21.9910	24.8290	34.0950	17.2010	24.6260	49.7270	51.0480	15.3620	20.6280	17.5140	11.3752	14.1900	49.3300	85.7940	37.2270	15.2090	12.7410	
	2533.1900	1101.4650	963.8420	823.5550	2787.4700	1131.8410	484.0190	1494.2650	888.2210	1901.6460	868.8270	809.3380	145.6720	1041.0580	871.8340	436.1752	1045.0100	321.9300	2535.1340	1062.8170	345.9490	909 4010	
	Lu	248.82	69.66	73.19	67.98	122.94	109.91	41.43	128.81	70.19	142.31	62.13	71.62	12.24	84.55	63.57	32.28	89.90	27.05	179.36	76.96	32.92	64 33
	Yb	1322.02	519.94	434.32	363.23	761.33	550.73	214.41	675.57	382.68	807.72	351.46	360.97	59.27	452.20	357.68	175.14	482.08	131.12	1002.80	430.19	163.60	367 44
	Tm	116.73	46.44	43.04	33.72	87.16	50.80	20.55	65.91	38.66	85.69	36.66	34.93	5.42	46.85	37.28	17.02	48.97	12.15	106.58	45.33	15.16	30.06
	Er	462.88	191.97	201.54	153.97	486.98	215.93	92.12	306.96	178.45	423.29	179.76	154.41	23.76	219.54	183.80	83.32	221.52	49.47	549.17	220.82	64.50	19677
	Но	89.24	39.78	44.29	33.55	148.77	44.37	20.17	65.55	40.89	95.49	41.17	31.67	5.47	49.27	43.90	20.94	46.66	10.32	130.57	51.93	13.08	47 87
	Dy	208.85	107.55	113.15	92.50	645.79	109.20	52.58	164.66	118.29	245.63	110.08	79.84	16.66	127.71	126.61	66.64	113.65	30.10	355.36	144.90	32.43	138 37
\$)/10-6	Tb	14.910	9.370	9.000	8.660	86.470	8.500	4.350	13.430	10.770	20.270	9.420	6.440	1.750	10.650	11.290	6.670	8.610	3.010	31.560	13.050	2.580	12 120
w(E	Gd	31.02	26.87	21.67	23.14	297.27	20.41	13.58	39.28	31.09	56.62	28.42	18.41	5.74	29.66	30.19	22.79	19.43	9.38	93.94	42.41	6.47	30.75
	Eu	3.050	3.930	0.471	2.140	27.240	1.467	1.083	2.490	0.676	1.940	0.807	0.901	0.669	0.698	1.303	0.533	0.900	1.170	7.840	1.980	0.248	977.0
	Sm	9.580	11.020	4.260	6.060	36.720	4.820	3.640	7.450	7.820	11.240	6.610	4.180	1.760	5.440	6.390	5.190	4.050	4.110	17.850	11.930	1.300	5 950
	PN	9.010	13.820	2.190	4.550	22.120	4.220	2.940	4.350	4.470	5.700	12.920	3.340	1.540	3.260	4.210	2.130	3.280	6.960	9.600	5.550	0.630	3 270
	Pr	1.400	2.020	0.245	0.441	3.240	0.614	0.236	0.506	0.501	0.429	2.150	0.332	0.194	0.171	0.456	0.173	0.310	1.400	0.487	0.326	0.032	0 752
	Ce	14.920	28.060	16.110	33.410	55.120	10.390	16.800	18.850	3.630	5.100	21.640	41.400	11.050	11.030	4.840	3.290	5.470	34.290	49.940	17.340	12.980	7 560
	La	0.7600	1.0050	0.3660	0.2040	6.3200	0.4800	0.1300	0.4490	0.1040	0.2170	5.6000	0.8950	0.1490	0.0290	0.3150	0.0592	0.1800	1.4000	0.0770	0.1010	0.0190	00000
锆石	点位	A21.56	A21.57	A21.58	A21.60	A21.64	A21.69	A21.70	A21.74	A21.77	A21.78	A21.81	A21.82	A21.83	A21.84	A21.85	A21.86	A34.01	A34.03	A34.06	A34.07	A34.09	A 2/1 11

								;	矿	床	₹	地		质										4
3-2 3-2	e Qe	2	11.37	262.80	25.26	10.16	2.47	2.22	4.97	1.59	6.57	8.09	1.51	72.90	2.09	42.58	3.00	4.01	30.05	9.29	14.40	8.83	3.50	2.80
卖表 able	SEu SEu	010	0.32	0.30	0.93	0.15	0.12	0.26	0.42	0.12	0.29	0.19	0.18	0.63	0.05	0.22	0.26	0.33	0.53	0.07	0.18	0.75	0.68	0.13
<u>4</u> ontinued T	(Ta/Vh)	(La/Yb) _N		0.000036	0.000287	0.000072	0.006890	0.008393	0.003734	0.037244	0.000588	0.000211	0.016946	0.000071	0.014891	0.000248	0.001502	0.004169	0.000438	0.000077	0.000172	0.000354	0.001502	0.004163
Ö	LREE/	HREE	0.0303	0.0839	0.0262	0.0147	0.0780	0.0743	0.0578	0.1670	0.0223	0.0098	0.0695	0.0308	0.0759	0.0436	0.0282	0.0448	0.0792	0.0150	0.0373	0.0339	0.0482	0.0409
	НВЕЕ		528.680	647.660	53.079	1064.220	656.030	550.600	354.070	647.130	639.850	420.570	453.420	803.320	521.750	587.700	1004.440	1012.080	165.443	656.980	955.210	587.320	706.130	617.280
	REE LREE		16.0070	54.3630	1.3923	15.6820	51.1520	40.9200	20.4650	108.1020	14.2410	4.1150	31.5140	24.7650	39.5860	25.6460	28.3390	45.3370	13.1103	9.8689	35.6330	19.9280	34.0390	25.2470
			544.6870	702.0230	54.4713	1079.9020	707.1820	591.5200	374.5350	755.2320	654.0910	424.6850	484.9340	828.0850	561.3360	613.3460	1032.7790	1057.4170	178.5533	666.8489	990.8430	607.2480	740.1690	642.5270
		Lu	49.98	56.62	4.61	74.49	49.58	42.94	30.47	62.61	52.80	29.47	32.36	85.37	38.88	46.01	73.14	88.05	14.64	36.80	60.43	56.88	47.15	47.89
		Yb	253.16	295.70	24.93	423.68	270.07	238.58	158.87	316.24	295.81	175.88	185.79	406.33	224.57	260.93	416.92	462.54 8	83.01	227.63	364.11	285.88	276.53	259.09
		Tm	24.43	28.86	2.36	46.26	28.23	24.60	16.00	30.11	29.84	18.82	19.03	38.02	23.72	26.44	44.05	45.65	7.27	26.55	40.54	24.90	29.48	27.27
		Er	107.05	132.16	11.29	235.56	139.77	120.44	74.49	129.71	134.79	95.91	95.30	157.25	115.49	126.36	220.06	216.71	30.07	148.25	215.63	112.07	152.51	135.90
		Но	22.43	28.64	2.47	57.95	32.95	26.85	16.51	26.21	29.26	23.30	23.26	31.49	25.96	28.72	52.09	46.17	6.33	40.24	53.81	23.61	37.02	30.84
		Dy	56.16	79.31	5.95	170.55	94.85	71.84	43.39	62.78	75.64	64.15	69.15	67.84	70.08	75.87	143.10	116.33	17.61	131.25	160.73	61.96	119.03	84.54
	;)/10 ⁻⁶	Tb	4.350	6.660	0.559	16.120	9.200	6.190	3.800	5.010	5.950	4.550	6.330	4.840	6.050	6.280	13.310	9.390	1.583	12.210	14.910	5.570	11.290	7.580
	w(E	Gd	11.12	19.71	16.0	39.61	31.38	19.16	10.54	14.46	15.76	8.49	22.20	12.18	17.00	17.09	41.77	27.24	4.93	34.05	45.05	16.45	33.12	24.17
		Eu	0.485	0.911	0.101	0.803	0.710	0.893	0.764	0.352	0.710	0.199	0.700	0.830	0.143	0.513	1.630	1.399	0.511	0.308	1.389	2.260	4.190	0.514
		Sm	1.880	4.290	0.121	7.000	10.120	5.690	2.950	5.530	3.610	1.170	6.200	1.340	4.540	3.070	9.050	6.220	1.770	5.480	11.760	5.140	10.700	5.890
		PN	1.064	1.990	0.143	2.970	13.320	9.650	3.040	20.520	2.440	0.520	5.690	1.420	6.950	1.540	6.740	6.660	1.260	1.990	8.030	3.260	6.910	5.100
		Pr	0.128	0.116	0.009	0.264	1.742	1.597	0.411	4.680	0.253	0.071	0.964	0.112	1.263	0.137	0.610	0.938	0.105	0.100	0.571	0.378	0.883	0.613
		Ce	11.950	47.040	1.008	4.600	22.500	20.120	12.420	59.550	6.970	2.100	13.290	21.020	21.730	20.290	9.380	27.260	9.410	1.965	13.790	8.740	10.740	11.530
		La	0.5000	0.0160	0.0106	0.0450	2.7600	2.9700	0.8800	17.4700	0.2580	0.0550	4.6700	0.0430	4.9600	0960.0	0.9290	2.8600	0.0539	0.0259	0.0930	0.1500	0.6160	1.6000
	锆石	点位	A34.12	A34.15	A34.17	A34.18	A34.21	A34.29	A34.32	A34.34	A34.35	A34.36	A34.42	A34.48	A34.52	A34.54	A34.55	A34.57	A34.61	A34.63	A34.70	A34.74	A34.77	A34.81

e Dx	2	39.01	20.34	39.01	5.99	7.32	7.45	151.18	66.77	11.72	13.26	27.92	3.18	13.76	23.93	13.12	3.23	10.03	4.12	9.60	33.31	3.69	20.00
λF.,,	0TM	0.19	0.09	0.53	0.23	0.13	0.13	0.86	0.70	0.27	0.27	0.33	0.34	0.21	0.57	0.53	0.07	0.12	0.99	0.45	0.08	0.22	020
(AVb)		0.000162	0.000148	0.000196	0.004679	0.001765	0.000154	0.000244	0.000046	0.001307	0.000180	0.000831	0.002747	0.000081	0.000259	0.000582	0.000474	0.000569	0.003177	0.000416	0.000135	0.000254	
LREE/	HREE	0.0279	0.0148	0.0718	0.0617	0.0337	0.0328	0.2501	0.0279	0.0701	0.0294	0.1116	0.0344	0.0207	0.0399	0.0488	0.0124	0.0732	0.0170	0.0340	0.0316	0.0085	
нвег		1039.850	1423.700	585.270	651.010	1287.570	885.500	327.710	1244.240	435.870	1410.250	243.340	670.410	1463.730	1108.600	810.910	827.520	117.210	131.673	883.400	1187.800	2133.980	
IRFF	TIMPE	28.9810	21.1280	42.0260	40.1700	43.3360	29.0830	81.9500	34.6530	30.5680	41.3950	27.1630	23.0450	30.3690	44.1990	39.5390	10.2650	8.5770	2.2360	29.9970	37.5360	18.1820	
B E E		1068.8310	1444.8280	627.2960	691.1800	1330.9060	914.5830	409.6600	1278.8930	466.4380	1451.6450	270.5030	693.4550	1494.0990	1152.7990	850.4490	837.7850	125.7870	133.9090	913.3970	1225.3360	2152.1620	
	Lu	90.49	115.12	53.34	63.75	96.99	54.54	20.88	97.91	33.74	108.24	18.78	62.11	105.96	104.21	68.01	59.95	3.64	18.82	70.14	74.31	177.71	
	Чb	499.35	643.33	275.51	327.06	569.30	327.49	118.76	528.63	184.10	617.24	101.37	328.82	597.33	537.12	384.32	339.63	24.89	73.63	404.78	460.89	988.97	
	Tm	47.89	65.66	25.84	29.60	57.39	36.50	13.54	54.70	18.93	60.98	10:01	30.56	64.69	50.22	36.53	36.54	3.28	5.33	39.50	51.27	101.13	
	Er	219.73	315.25	116.33	128.21	281.85	201.14	70.54	279.37	92.37	301.61	48.25	135.45	328.46	222.00	162.32	185.10	18.29	19.75	184.58	274.71	474.15	
	Но	44.72	68.85	24.83	25.07	64.27	50.81	18.87	63.27	21.38	68.66	11.85	27.56	77.69	45.96	34.94	43.61	6.71	3.47	43.39	66.46	98.83	
	Dy	110.14	174.76	67.18	60.07	166.96	152.07	57.16	166.79	61.38	186.99	36.11	67.46	217.67	115.73	94.86	123.75	34.33	8.23	107.61	193.08	240.46	
B)/10 ⁻⁶	Tb	8.090	13.100	5.960	4.950	13.550	14.430	5.800	13.720	5.790	16.600	3.860	5.370	19.000	9.150	8.010	10.600	5.100	0.703	8.690	17.140	17.530	
W(Gd	19.44	27.63	16.28	12.30	35.26	48.52	22.16	39.85	18.18	49.93	13.11	13.08	52.93	24.21	21.92	28.34	20.97	1.74	24.71	49.94	35.20	
	Eu	0.550	0.297	1.400	0.467	0.698	1.031	3.130	3.810	0.834	2.140	0.714	0.698	1.630	2.220	1.990	0.271	0.384	0.204	1.800	0.592	1.017	
	Sm	3.870	3.850	3.990	3.080	7.340	11.970	1 5.530	066.9	5.040	11.710	3.270	3.080	10.800	5.850	6.040	5.060	4.780	0.227	090.9	10.950	5.480	
	ΡN	1.750	2.450	2.780	3.180	5.500	8.800	4.420	3.490	4.900	7.110	2.980	4.650	6.200	4.420	5.480	2.050	1.160	0.126	5.200	4.580	4.640	
	Pr	0.161	0.200	0.526	0.663	0.558	0.607	0.277	0.147	0.427	0.760	0.234	0.677	0.527	0.473	0.637	0.145	0.122	0.017	0.647	0.252	0.443	
	Ce	22.530	14.190	33.250	30.510	27.750	6.600	68.550	20.180	19.010	19.510	19.840	12.600	11.140	31.030	25.060	2.500	2.110	1.315	16.040	21.070	6.230	
١m	位 La	1.82 0.1200	.08 0.1410	1.15 0.0800	1.18 2.2700	1.20 1.4900	1.27 0.0750	1.28 0.0430	1.29 0.0360	1.30 0.3570	1.33 0.1650	1.36 0.1250	1.37 1.3400	1.41 0.0720	1.42 0.2060	1.43 0.3320	1.49 0.2390	1.54 0.0210	1.55 0.3470	1.56 0.2500	1.58 0.0920	1.59 0.3720	

1183

		矿	J.	末	地	Ĩ	质						
الح 3-4 4-4	Eu &Ce	202	49 11.53	08 6.97	34 3.97	49 13.75	10 5.63	30 34.14	28 10.07	49 11.53	Eu=		
续 ttinued Tab	S (AVA) A	(Ld/ 1 U)N	0.000336 0.	0.000058 0.	0.001004 0.	0.002840 0.	0.000253 0.	0.000061 0.	0.000369 0.	0.000206 0.	化后的比值:8		
Ē	LREE/	HREE	0.0441	0.0080	0.0218	0.0812	0.0071	0.0273	0.0253	0.0261	陨石标准(
	НВЕЕ		517.180	1508.450	981.410	452.900	1099.550	597.970	954.850	860.660	自进行球粒		
	I R FF		22.8190	12.0300	21.3990	36.7600	7.8390	7.8390 16.3140	24.1250	22.4290	1 与 Yb 各 I		
	RFF		539.9990 520.4800 002.8090 489.6600				1107.3890	614.2840	978.9750 883.0890		/Yb) _N 为La		
		Lu	30.64	70.05 76.60	42.07	80.89	49.77	82.61	81.97	: 比值: (La	CIT		
		Yb	196.85	638.46	435.77	212.50	463.35	265.10	438.59	415.79	E 5 HREE		
		Tm	20.59	69.48	44.75	19.93	50.88	26.54	43.02	39.07	E 为 LRE	滩化值。	
		Er	106.34	344.70	213.31	90,23	250.80	124.66	197.77	165.41	EE/ HREI	粒陨石板	
		Ho	27,45	79.85	48.18	19.04	57.73	28.14	44.11	34.92	REE: LRI	应元素球	
		Ŋ	93.02	209.29	126.15	50.97	158.00	77.80	114.65	91.04	REE+HF	分别为对	
0	3)/10 ⁻⁶	dT	9.240	16.150	9.750	4.330	12.410	6.690	9.440	7.790	∑,REE=I	a _N 和 Pr _N	
KY K	W()	Gd	33.05	38.70	26.90	13.83	25.49	19.27	24.66	24.67	元素总量,	Gd _N , L	
W		Eu	2.490	0.395	1.370	1.080	0.291	0.880	1.031	1.940	3重稀土5	en, Sm _n ,	
		Sm	7.260	5.740	5.570	3.220	3.140	4.150	5.110	6.000	HREE 🤌	其中, C	
		PN	3.600	2.690	3.910	2.430	1.700	2.600	3.480	4.040	元素总量,	a _N Pr _N) ^{1/2} ,	
		Pr	0.361	0.190	0.500	0.285	0.064	0.150	0.454	0.342	为轻稀土。	e= Ce _N / (L	
		Ce	9.010	2.960	9.400	28.850	2.470	8.510	13.810	9.980	。LREE)	_N) ^{1/2} , ôCé	
		La	0.0980	0.0550	0.6490	0.8950	0.1740	0.0240	0.2400	0.1270	1 单位为1	₄/(Sm _N Gd	
	锆石	点位	A61.63	A61.66	A61.73	A61.74	A61.76	A61.78	A61.86	A61.88	注:比值	Eur	

图 6 江汉盆地沙市组碎屑锆石年龄谱图及直方图 (*n*=97,为锆石颗粒数)

Wang et al.,2009)。然而,该时期锆石的 Th/U比 值为0.21~0.98,表明了岩浆锆石成因,同时锆石形 态特征也支持。所以,印支期的锆石与大别山的高 压和超高压变质岩无关。结合当时岩相古地理特征 (李俊,2009),印支期的锆石应来自盆地东北部扬子 板块与大别造山带之间碰撞带附近的火山弧(Liu et al.,2013)。

早古生代年龄的锆石占据了 18.6%,这个年龄 组与全球构造岩浆事件加里东运动(Ireland et al., 1998)相当。而加里东花岗岩广泛分布于江南造山 带,例如湖南省和江西省(湖南省地质矿产局,1998; 江西省地质矿产局,1984; Li et al.,2010; Wang et al.,2011)。而中扬子地区和大别造山带不发育早古 生代年龄的锆石,显然这些碎屑锆石应来自江南造 山带。356 Ma、300 Ma 和 172 Ma 年龄含量较少,可能表明海西和燕山期花岗岩对研究区的物源供应是不重要的。

因此,江汉盆地古新世时期盆地物源主要由黄 陵隆起以及扬子板块与大别造山带之间碰撞带提 供,而盆地南缘的江南造山带物源则处于次要地位。 当然,需要进一步研究去证实。

6 盆地西南缘成钾初探

江陵凹陷是江汉盆地的一个次级凹陷,位于盆 地的西南缘。古新世时期该凹陷是江汉盆地的沉降 中心,凹陷内白垩系至古近系最大沉积厚度近万米, 蒸发岩主要发育于古新统沙市组和始新统新沟嘴 组。近几年来在江陵凹陷古新统沉积序列中发现了 固体钾盐矿物及富钾卤水(潘源敦等,2011;刘成林, 2013;刘成林等,2013;王春连等,2015),然而盆地内 钾的来源仍然是不清楚的,即钾元素的富集机理缺 乏研究。

从上述江汉盆地物源分析可知,古新世时期盆 地物源主要来自黄陵隆起与大别造山带。据白寿昌 (1989)和 Xiong 等(2008)可知,黄陵花岗岩和圈椅 埫花岗岩的 w(K₂O)分别为 2.10% ~ 3.60% 和 5.25% ~ 5.81%,K₂O含量很高,这些花岗岩的剥蚀 再沉积可以为该凹陷成钾物质来源提供充足物源。

7 结 论

本次研究首次对江江汉盆地西南缘古新统沙市 组进行了碎屑锆石 LA-ICPMS 测年,获得了 97 颗协 和年龄锆石,表现出 12 个年龄峰值。得出以下认 识:

(1)根据碎屑锆石形貌特征、Th/U比值及稀土 元素配分模式可知,碎屑锆石总体为岩浆锆石,同时 存在少量的变质锆石。

(2)沙市组碎屑锆石年龄主要集中于古元古 代、新元古代和早古生代。其中,新元古代所占比例 最大,新元古代和古元古代的锆石来自盆地西北缘 的黄陵隆起。

(3) 早中生代碎屑锆石年龄较明显,表明了印 支期花岗岩的对该区物源的贡献。该时期碎屑锆石 来自扬子板块与大别造山带之间碰撞带附近的火山 弧。 (4)根据江陵凹陷西南缘古新统沙市组碎屑锆 石的 U-Pb 年代学及古地理特征可知,该地层主要物 源来自黄陵隆起以及扬子板块与大别造山带之间碰 撞带,而江南造山带的贡献是次要的。黄陵隆起花 岗岩含钾高,其风化带来了丰富的钾进入该盆地。

志 谢 野外工作中得到了锦辉(荆州)精细化 工有限公司陈成、章宽及中国地质科学院矿产资源 研究所赵艳军副研究员和博士研究生沈立建、中国 地质大学(北京)硕士研究生张林兵的大力支持和帮 助,在此表示衷心的感谢。同时,感谢评审专家提出 富有建设性的宝贵意见。

References

- Bai S C. 1989. Geochemical characteristics of Huangling granite in "Three Gorge Red", western Hube[J]. China Non-metallic Mining Industry Herald, (1):25-29(in Chinese).
- Belousova E , Griffin W L , O 'Reilly S Y and Fisher N L. 2002. Igneous zircon: Trace element composition as an indicator of source rock type J] Contributions to Mineralogy and Petrology , 143: 602-622.
- Boynton W V. 1984. Cosmochemistry of the rare earth elements : Meteorite studies A]. In : Henderson P , ed. Rare earth elements geochemistry C]. Amsterdam : Elsevier. 63-114.
- Ershoval V B, Prokopiev A V, Khudoley A K, Sobolev N N and Petrov E O. 2015. Detrital zircon ages and provenance of the Upper Paleozoic seccessions of Kotel 'ny Island (New Siberian Islands archipelago J J]. Lithos, 7:40-45.
- Fedo C M and Erikseon K A. 1996. Stratigraphic framework of the 3.0 Ga Buhwa Greenstone Belt : A unique stable-shelf succession in the Zimbabwe Archean Crator [J]. Precambrian Research , 7(3):161-178.
- Gao S, Zhang B R and Li Z J. 1990. Geochemical evidence for Proterozoic continental arc and continental-margin rift magmatism along the northern margin of the Yangtze Craton, South China[J]. Precambrian Research, 47:205-221.
- Gao S , Yang J , Zhou L , Li M , Hu Z C , Guo J L , Yuan H L , Gong H J , Xiao G Q and Wei J Q. 2011. Age and growth of the Archean Kongling terrain , South China , with emphasis on 3.3 Ga granitoid gneisses [J]. American Journal of science , 311:153-182.
- Grimmer J C , Ratschbacher L , Franz L , Gaizch I , Tichomirowa M ,

McWilliams M , Hacker B R and Zhang Y. 2003. When did the ultrahigh-pressure rocks reach the surface? A ²⁰⁷Pb/²⁰⁶Pb zircon , ⁴⁰Ar/³⁹Ar white mica , Si-in white mica , single-grain Provenance study of DabieShan synorogenic foreland sediments[J]. Chemical Geology , 197 : 87-110.

- Hunan Bureau of Geology and Mineral Resource. 1998. Regional geology survey in Hunan Province [M]. Beijing: Geological Publishing House. 368-465 (in Chinese).
- Ireland T R , Flottmann T and Fanning C M. 1998. Development of the Early Paleozoic Pacific margin of Gondwana from detrital zircon ages across the Delamerian Oroger[J]. Geology , 26 :243-246.
- Jiangxi Bureau of Geology and Mineral Resource. 1984. Regional geology survey in Jiangxi Province[M]. Beijing : Geological Publishing House. 358-558 (in Chinese).
- Jiao W F , Wu Y B , Yang S H , Peng M and Wang J. 2009. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition[J]. Science in China Series D : Earth Sciences 52(9) 368-465.
- Lei W Y, Shi G H and Liu Y X. 2013. Research progress on trace element characteristics of zircons of different origins J]. Earth Science Frontiers , 20(4):273-284 (in Chinese with English abstract).
- Li J. 2009. Relationship between characteristics of paleocurrent and basin-filling evolution of Upper Jurassic-paleogene in Middle Yangzte area (Master Dissertation J D]. Supervisor : Yu B S. Beijing : China University of Geosciences. 63-66 (in Chinese with English abstract).
- Li R W, Wan Y S, Cheng Z Y, Zhou J X, Li S Y, Jin F Q, Meng Q R, Li Z and Jiang M S. 2005. Provenance of Jurassic sediments in the Hefei Basin, East-Central China and the contribution of highpressure and ultrahigh-pressure metamorphic rocks from the Dabie Shar[J]. Earth and Planetary Science Letters, 231:279-294.
- Li X H , Li Z X , Ge W , Zhou H , Li W , Liu Y and Wingate M T D. 2003. Neoproterozoic granitoids in South China : Crustal melting above a mantle plume at 825 Ma[J]? Precambrian Research , 122 : 45-83.
- Li Z X , Li X H , Wartho J A , Clark C , Li W X , Zhang C L and Bao C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny , southeastern South China : New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin , 122 : 772-793.
- Ling W L , Gao S , Zhang B R , Zhou L and Xu Q D. 2001. The recognizing of ca. 1.95 Ga tectono-thermal event in Kongling nucleus and

its significance for the evolution of Yangtze Block , South China J J. Chinese Science Bulletin , 46 : 326-329.

- Liu C L. 2013. Characteristics and formation of potash deposits in continental rift basin : A review[J]. Acta Geoscientica Sinica , 34(5): 515-527 (in Chinese with English abstract).
- Liu C L , Wang C L , Xu H M , Liu B K , Shen L J , Wang L C and Zhao Y J. 2013. Research progress on potash minerals in Paleogene evaporates in Jiangling Depression[J]. Mineral Deposits , 32(1): 221-222 (in Chinese).
- Liu L J , Xiao J X , Lin C S , Wang D F and Lu M G. 2003. Depositional system and sequence stratigraphy of the Shashi Formation in Jiangling Depression in Jianghan Basin , South China J J. Petroleum Exploration and Development , 30(2):27-29(in Chinese with English abstract).
- Liu S F and Zhang G W. 2013. Mesozoic basin development and its indication of collisional orogeny in the Dabie Oroger[J]. Chinese Science Bulletin, 58:827-852.
- Liu X M , Gao S , Diwu C R and Ling W L. 2008. Precambrian crustal growth of yangtze craton as revealed by detrital zircon studies J J. American Journal of Science , 308:421-468.
- Liu Z R and Wang X L. 2009. Features of subtle-trap formation and implication for hydrocarbon exploration in southwest of Jianghan Basir[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 31(4):176-179(in Chinese with English abstract).
- Lu S N, Chen Z H, Xiang Z Q, Li H K, Li H M and Song B. 2006. U-Pb ages of detrital zircons from the para-metamorphic rocks of the Qingling Group and their geological significance J]. Earth Science Frontiers, 13(6): 303-310 (in Chinese with English abstract).
- Ludwig K R. 2012. User 's Manual for Isoplot/Ex rev. 3.75 : A geochronological toolkit for Microsoft Excel [J]. Berkeley Geochronology Center, Special Publication 5.
- Ma G G , Li H X and Zhang Z C. 1984. An investigation of the age limits of the Sinian system in South China[J]. Bulletin of Yichang Institute of Geological Mineral Resources , Chinese Academy of geological sciences , (8):1-29 (in Chinese with English abstract).
- Okay A I , Sengör A M C and Satir M. 1993. Tectonics of an ultrahighpressure metamorphic terrain : The Dabie Shan/Tongbai Shan Orogen , Ching J]. Tectonics , 12 : 1320-1334.
- Pan Y D , Liu C L and Xu H M. 2011. Characteristics and formation of potassium-bearing brine in the deep strata in depression in Hubei Jiangling Province J J. Geology of Chemical Minerals , 33(3):65-71

(in Chinese with English abstract).

- Qiu Y M, Gao S, McNaughton N J, Groves D I and Ling W L. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. J J. Geology , 28:11-14.
- Ratschbacher L , Hacker B R , Webb L E , McWilliams M , Ireland T , Dong S , Calvert A , Chateigner D and Wenk H R. 2000. Exhumation of the ultrahigh-pressure continental crust in East Central China : Cretaceous and Cenozoic unroofing and the Tan-Lu faul [J]. Journal of Geophysical Research , 105 : 13303-13338.
- Roser B P and Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO₂ content and K₂O/Na₂O ratid J J. Journal of Geology , 94 : 635-650.
- Shen C B, Mei L M, Liu Z Q and Xu S H. 2009. Apatite and zircon fission track data, evidences from the Mesozoic-Cenozoic uplift of Huangling Dome, central China[J]. Journal of Mineralogy and Petrology, 29(2):54-60 (in Chinese with English abstract).
- Shen C B, Mei L F, Peng L, Chen Y Z, Yang Z and Hong G F. 2012. LA-ICPMS U-Pb zircon age constraints on the provenance of cretaceous sediments in Yichang area of Jianghan Basin, central China J J. Cretaceous Research, 34 : 172-183.
- Shi Y S , Jia C Z JiaD and Guo L Z. 1990. Plate tectonics of East Qinling Mountains , China J]. Tectonophysics , 183 : 25-30.
- Sircombe K N. 1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia[J]. Sedimentary Geology, 124:47-67.
- Wang C L , Liu C L , Hu H B , Mao J S , Shen L J and Zhao H T. 2012. Sedimentary characteristics and its environmental significance of saltbearing strata of the Member 4 of Paleocene Shashi Formation in southern margin of Jiangling Depression , Jianghan Basir[J]. Journal of Palaeogeography , 14(2): 165-175 (in Chinese with English abstract).
- Wang C L , Liu C L , Xu H M , Wang L C and Zhang L B. 2013a. Carbon and oxygen isotopes characteristics of Palaeocene saline lake facies carbonates in Jiangling Depression and their environmental significance J J. Acta Geoscientica Sinica , 34(5):567-576 (in Chinese with English abstract).
- Wang C L , Liu C L , Xu H M , Wang L C and Zhang L B. 2013b. Homogenization temperature study of salt inclusions from the upper section of Shashi Formation in Jiangling Depressior[J]. Acta Petrological et Mineralogical , 32(3): 383-392 (in Chinese with English abstract).

- Wang C L , Liu C L , Liu B K , Shen L J , Cai X L , Yu X C , Xie T X , Wang L C , Zhao Y J and Xuan Z Q. 2015. The discovery of carnallite in Paleocene Jiangling Depression and its potash searching significance J]. Acta Geologica Sinica , 89(1):129-136 (in Chinese with English abstract).
- Wang X L, Zhou J C, Griffin W L, Wang R C, Qiu J S, O'Reilly S Y, Xu X S, Liu X M and Zhang G L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 159:117-131.
- Wang Y J , Fan W M , Peng T P , Zhang H F and Guo F. 2005. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the DabieOrogen , Central China : Evidence from ⁴⁰Ar/³⁹Ar geochronology , elemental and Sr-Nd-Pb isotopic compositions of Early Cretaceous mafic igneous rocks[J]. Chemical Geology , 220 : 165-189.
- Wang Y J, Zhao G C, Xia X P, Zhang Y H, Fan W M, Li C, Bi X W and Li S Z. 2009. Early Mesozoic unroofing pattern of the Dabie Mountains (China): Constraints from the U-Pb detrital zircon geochronology and Si-in-white mica analysis of synorogenic sediments in the Jianghan Basir[J]. Chemical Geology , 266 : 231-241.
- Wang Y, Zhang A, Fan W, Zhao G, Zhang G, Zhang Y, Li F and Li S. 2011. Kwangsian crustal anatexis within the eastern South China Block : Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai domains J. Lithos, 127:239-260.
- Weltje G J and Eynatten H. 2004. Quantitative provenance analysis of sediments : Review and outlook J.J. Sedimentary Geology , 171 : 1-11.
- Wu F Y, Yang J H, Simon A W, Liu X M, Guo J H and Zhai M G. 2007. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea[J]. Precambrian Research , 159 : 155-177.
- Wu R X , Zheng Y F , Wu Y B , Zhao Z F , Zhang S B , Liu X M and Wu F Y. 2006. Reworking of juvenile crust : Element and isotope evidence from Neoproterozoic granodiorite in South China J . Precambrian Research , 146 : 179-212.
- Xiong Q, Zheng J P, Yu C M, Su Y H and Zhang Z H. 2009. Zircon U-Pb age and Hf isotope of Quanyishang a-type granite in Yichang : Signification for the Yangtze continental cratonization in Paleoproterozoid J Chinese Science Bulletin, 54(3):436-446.
- $Xu\;Z\;Y$, $Lu\;W\;Z$, $Lin\;K$, $Liu\;C\;Y$, $Wang\;Y\;J$ and $Guo\;F.$ 2005. Dis-

crepant uplifting processes of the Qingling-Dabie and Jiangnan Orogens: Evidence from Meso-Cenozoic sedimentary records in the Jianghan superimposed Basin[J]. Chinese Journal of Geology, 40: 179-197 (in Chinese with English abstract).

- Yan Y, Lin K, Wang Y J and Guo F. 2002. The indication of continental detrital sediment to tectonic setting J]. Advances in Earth Sciences, 17(1):85-106 (in Chinese with English abstract).
- Yang Z Y and He B. 2012. Geochronology of detrital zircons from the Middle Triassic sedimentary rocks in the Nanpanjiang Basin : Provenance and its geological significance [J]. Geotectonica et Metallogenia , 36(4):581-596(in Chinese with English abstract).
- Yao J L , Shu L S , Santosh M and Li J Y. 2013. Geochronology and Hf isotope of detrital zircons from Precambrian sequences in the eastern Jiangnan Orogen: Constraining the assembly of Yangtze and Cathaysia Blocks in South China[J]. Journal of Asian Earth Sciences , 74 : 225-243.
- You Y, Xia P and Yu L L. 2013. Sedimentary characteristics of evaporates of Shashi Formation in Jiangling Depression[J]. Journal of Yangtze University (Natural Science Edition), 10(2): 41-44 (in Chinese).
- Yu X C , Wang C L , Liu C L , Zhang Z C , Xu H M and Xie T X. 2014. REE geochemical characteristics of sedimentary rocks in Jianghan Depression and their geological sinificance J J. Mineral Deposits , 33 (5):1057-1068 (in Chinese with English abstract).
- Yu X C , Wang C L , Liu C L , Zhang Z C , Xu H M , Huang H , Xie T X , Li H N and Liu J L. 2015. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression , China J]. Chinese Journal of Oceanology and Limnology , 33(6):1426-1435.
- Yuan H H , Zhang Z L , Liu W and Lu Q X. 1991. Direction dating method of zircon grains by ²⁰⁷Pb/²⁰⁶Pb[J]. Journal of Mineralogy and Petrology , (2):72-79 (in Chinese with English abstract).
- Yuan H L , Gao S , Liu X M , Li H M , Günther D and Wu F Y. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry[J]. Geostandards and Geoanalytical Research , 28:353-370.
- Zhang S B , Zheng Y F , Wu Y B , Zhao Z F , Gao S and Wu F Y. 2006a. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South Chind J]. Earth and Planetary Science Letters , 252 : 56-71.
- Zhang S B , Zheng Y F , Wu Y B , Zhao Z F , Gao S and Wu F Y. 2006b. Zircon U-Pb age and Hf-O isotope evidence for Paleoprotero-

zoic metamorphic event in South China[J]. Precambrian Research, 151:265-288.

- Zheng Y F. 2003. Neoproterozoic magmatism and global changes J J. Chinese Science Bulletin , 48:1639-1656.
- Zheng Y F, Wu Y B, Chen F K, Gong B, Li L and Zhao Z F. 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale ¹⁸O depletion event in igneous rocks during the Neoproterozoid J J. Geochimica et Cosmochimica Acta, 68 :4145-4165.
- Zheng Y F and Zhang S B. 2007. Formation and evolution of Precambrian continental crustal in South China[J]. Chinese Science Bulletin , 52:1-12.
- Zhou M F, Kennedy A K, Sun M, Malpas J and Lesher C M. 2002. Neoproterozoic arc-related mafic intrusions along the northern margin of South China : Implications for the accretion of Rodinia J]. Journal of Geology , 110 : 611-618.

附中文参考文献

- 白寿昌. 1989. 鄂西'三峡红'——黄陵花岗岩的岩石化学特征[J]. 中国非金属矿工业导刊,(1):25-29.
- 湖南省地质矿产局. 1998. 湖南省区域地质[M]. 北京:地质出版 社. 368-465.
- 江西省地质矿产局. 1984. 江西省区域地质[M]. 北京:地质出版 社. 358-558.
- 雷玮琰 施光海,刘迎新. 2013. 不同成因锆石的微量元素特征研究进展 J]. 地学前缘, 20(4):273-284.
- 李俊. 2009. 中扬子上侏罗统—古近系古水流特征及其与盆地充填 演化的关系(硕士论文 [D]. 导师:于炳松. 北京:中国地质大 学. 63-66.
- 刘成林. 2013. 大陆裂谷盆地钾盐矿床特征与成矿作用[J]. 地球学报,34(5):515-527.
- 刘成林,王春连,徐海明,刘宝坤,沈立建,王立成,赵艳军.2013. 江 陵凹陷古近系蒸发岩中钾盐矿物研究进展[J]. 矿床地质,32 (1):221-222.
- 刘丽军,肖建新,林畅松,王典敷,卢明国.2003. 江汉盆地江陵凹陷 沙市组层序地层与沉积体系分析[J]. 石油勘探与开发,30(2): 27-29.
- 刘中戎,王雪玲. 2009. 江汉盆地西南缘隐蔽圈闭形成特征及油气勘

探意义[J]. 石油天然气学报(江汉石油学院学报), 31(4):176-179.

- 陆松年 陈志宏 相振群 李怀坤 李惠民 宋彪. 2006. 秦岭岩群副变 质岩碎屑锆石年龄谱及其地质意义探试 J]. 地学前缘,13(6): 303-310.
- 马国干,李华芹,张自超. 1984. 华南地区震旦纪时限范围的 研究[]]中国地质科学院宜昌地质矿产研究所所刊,(8):1-29.
- 潘源敦,刘成林,徐海明. 2011. 湖北江陵凹陷深层高温富钾卤水特 征及其成因探试 J]. 化工矿产地质, 33(3):65-71.
- 沈传波,梅廉夫,刘昭茜,徐思煌. 2009. 黄陵隆起中-新生代隆升作 用的裂变径迹证据 J]. 矿物岩石, 29(2):54-60.
- 王春连,刘成林,胡海兵,毛劲松,沈立建,赵海彤. 2012. 江汉盆地江 陵凹陷南缘古新统沙市组四段含盐岩系沉积特征及其沉积环境 意义[J]. 古地理学报,14(2):165-175.
- 王春连,刘成林,徐海明,王立成,张林兵. 2013a. 江陵凹陷古新世盐 湖沉积碳酸盐碳氧同位素组成及其环境意义[J]. 地球学报,34 (5):567-576.
- 王春達,刘成林,徐海明,王立成,张林兵. 2013b. 江陵凹陷沙市组上 段石盐包裹体测温学研究[J]. 岩石矿物学杂志,32(3):383-392.
- 王春连,刘成林,刘宝坤,沈立建,蔡晓琳,余小灿,谢腾骁,王立成,赵 艳军,宣之强. 2015. 江陵凹陷古新统光卤石的发现及其钾盐找 矿意义[J]. 地质学报,89(1):129-136.
- 徐政语,卢文忠,林舸,刘池阳,王岳军,郭峰. 2005. 秦岭-大别造山 带与江南造山带差异隆升过程:来自江汉盆地中-新生代沉积记 录的证据]]. 地质科学,40(2):179-197.
- 闫义 林舸, 王岳军, 郭锋. 2002. 盆地陆源碎屑沉积物对源区构造背景的指示意义[J]. 地球科学进展, 17(1):85-106.
- 杨宗永,何斌. 2012. 南盘江盆地中三叠统碎屑锆石地质年代学:物 源及其地质意义[J]. 大地构造与成矿学,36(4):581-596.
- 尤英,夏平,余丽玲. 2013. 江陵凹陷沙市组蒸发岩沉积特征 研究J] 长江大学学报(自然科学版),10(2):41-44.
- 余小灿,王春连,刘成林,张招崇,徐海明,谢腾骁.2014. 江陵凹 陷古新统沉积岩稀土元素地球化学特征及其地质意义[J]. 矿床 地质,33(5):1057-1068.
- 袁海华 张志兰 刘炜 卢秋霞. 1991. 直接测定颗粒锆石²⁰⁷Pb/²⁰⁶Pb 年龄的方法 J]. 矿物岩石 ,(2):72-79.